头像

Hong Zeng

Doctor Professor | Doctoral Supervisor

Degree: Doctor

Post:

Research direction: BCI, AI, Cognitive Computing

Career: Professor

Graduate School: HDU

Address:

Email: jivon@hdu.edu.cn

Postcode: 310018

Hong Zeng is now the professor of the School of Computer Science of HDU, also was 

the Visiting Scholar of University of Rome University "La Sapienza"(2019.01-2019.12). 

He is one of the core members of HDU BMCI (approved by the MOST, China) 

and the Director of Technical R&D of Brain-Machine Collaborative Technology 

for Brain Health Industry, Zhejiang Provincial Engineering Research Centre.

His main research interests include AI, ML/DL, cognitive computing, and BCI.





2014.9-2018.10 PhD Candidate in Computer Science and Technology, HDU


2002.09-2005.04 Master of Computer Application, HDU


1994.09-1998.06 Bachelor's Degree in Computer Science and Technology, Hangzhou University


2023.01-Present Professor, School of Computer Science, HDU


2014.01-2022.12 Associate Professor, School of Computer Science, HDU


2005.04-2013.12 Lecturer, School of Computer Science, HDU


1998.07-2002.08 Assistant Professor, Department of Computer Science, NCHU


AI

cognitive computing

BCI



Longitudinal research
Transverse scientific research
Publications

[1] Zeng, H., Xia, N., Tao, M., Pan, D., Zheng, H., Wang, C., ... & Dai, G. (2023). DCAE: A dual conditional autoencoder framework for the reconstruction from EEG into image. Biomedical Signal Processing and Control, 81, 104440.

[2] Zeng, H., Wu, Q., Jin, Y., Zheng, H., Li, M., Zhao, Y., ... & Kong, W. (2022). Siam-GCAN: a Siamese Graph Convolutional Attention Network for EEG Emotion Recognition. IEEE Transactions on Instrumentation and Measurement.

[3] Zeng, H., & Zakaria, W. (2022). A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification. Neural Computing and Applications, 1-23.

[4] Zeng, H., Fang, X., Zhao, Y., Wu, J., Li, M., Zheng, H., ... & Dai, G. (2022). EMCI: A Novel EEG-Based Mental Workload Assessment Index of Mild Cognitive Impairment. IEEE Transactions on Biomedical Circuits and Systems.

[5] Zhao, Y., Dai, G., Fang, X., Wu, Z., Xia, N., Jin, Y., & Zeng, H*. (2022). E3GCAPS: Efficient EEG-based multi-capsule framework with dynamic attention for cross-subject cognitive state detection. China Communications, 19(2), 73-89.

[6] Zeng, H., Jin, Y., Wu, Q., Pan, D., Xu, F., Zhao, Y., ... & Kong, W. (2022). EEG-FCV: An EEG-Based Functional Connectivity Visualization Framework for Cognitive State Evaluation. Frontiers in Psychiatry, 13.

[7] Di Flumeri, G., Ronca, V., Giorgi, A., Vozzi, A., Aricò, P., Sciaraffa, N., ... & Borghini, G. (2022). EEG-Based Index for Timely Detecting User’s Drowsiness Occurrence in Automotive Applications. Frontiers in Human Neuroscience, 16.

[8] Zhao, Y., Dai, G., Borghini, G., Zhang, J., Li, X., Zhang, Z., ... & Zeng, H*.(Corresponding Author) (2021). Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation. Frontiers in Human Neuroscience, 546.

[9] Zeng, H., Li X, Borghini G, et al. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction[J]. Sensors, 2021, 21(7): 2369.

[10] Zeng, H., Zhang, J., Zakaria, W., Babiloni, F., Gianluca, B., Li, X., & Kong, W. (2020). InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection. Sensors, 20(24), 7251.

[11] Shen, F., Dai, G., Lin, G., Zhang, J., Kong, W., & Zeng, H*. (Corresponding author) (2020). EEG-based emotion recognition using 4D convolutional recurrent neural network. Cognitive Neurodynamics, 1-14. 

[12] Jing, X., Zeng, H., Wang, S., & Xu, J. (2020) (Joint first author). A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning. In Protein-Protein Interaction Networks (pp. 67-80). Humana, New York, NY. (2020)

[13] Zhenhua Wu, Hong Zeng, Yue Zhao, Xiufeng Li, Jiaming Zhang, and Motonobu Hattori, Cross-subject EEG Channel Optimization by Domain Adversarial Sparse Learning Model, in Proceeding on BIBM'2020 

[14] Hong Zeng, Jiaming Zhang, Wael Zakaria, Fabio Babiloni *, Gianluca Borghini, Xiufeng Li, Wanzeng Kong, InstanceEasyTL: An Improved Transfer Learning Method for EEG-based Cross-subject Fatigue Detection, Sensors, 2020 

[15] Zeng, H., Wu, Z., Zhang, J., Yang, C., Zhang, H., Dai, G., & Kong, W. (2019). EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model. Brain sciences, 9(11), 326. 

[16] Zeng, H., Yang, C., Zhang, H., Wu, Z., Zhang, J., Dai, G., ... & Kong, W. (2019). A lightGBM-based EEG ****ysis method for driver mental states classification. Computational intelligence and neuroscience, 2019.

[17] Kong, W., Fu, S., Deng, B., Zeng, H., Zhang, J., & Guo, S. (2019). Embedded BCI Rehabilitation System for Stroke. Journal of Beijing Institute of Technology, (1), 5.

[18] Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo. A web server for inter-protein contact prediction using deep learning[J],Nucleic Acids Research

[19] Zeng H, Yang C, Dai G, et al. EEG Classification of driver mental states by deep learning[J]. Cognitive Neurodynamics

[20] Zeng, Hong, Dai Guojun, Kong Wanzeng, et al (2017). A Novel Nonlinear Dynamic Method for Stroke Rehabilitation Effect Evaluation using EEG[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering

[21] Kong W, Guo S, Long Y, Zeng H, et al (2018). Weighted extreme learning machine for P300 detection with application to brain computer interface[J]. Journal of Ambient Intelligence & Humanized Computing

[22] Lei X, Wang L, Kong W, Zeng H, et al (2017). Identification of EEG features in stroke patients based on common spatial pattern and sparse representation classification[C]// International IEEE/EMBS Conference on Neural Engineering. IEEE.

[23] Hong Zeng, Yidan Hu, Jin Fan, Haiyang Hu, Zhigang Gao, and Qiming Fang (2016). Arm motion recognition and exercise coaching system for remote interaction[J], Mobile Information Systems.

[24] Hong Zeng, Jianhui Zhang, Guojun Dai, Zhigang Gao, and Haiyang Hu (2014). Security Visiting: RFID-based smartphone indoor guiding system[J], International Journal of Distributed Sensor Networks.

[25] Hong Zeng, Jianhui Zhang, and Guojun Dai (2013). Construction of low weighted and fault-tolerant topology for wireless ad hoc and sensor network[J], International Journal of Sensor Network.

[26] Zhao Y, Zeng H*, Zheng H, et al (2023). A bidirectional interaction-based hybrid network architecture for EEG cognitive recognition[J]. Computer Methods and Programs in Biomedicine, 238: 107593. 

[27] Hong Zeng, Nianzhang Xia, Dongguan Qian, Motonobu Hattori, Chu Wang and Wanzeng Kong (2023). DM-RE2I: A framework based on Diffusion Model for the Reconstruction from EEG to Image, Biomedical Signal Processing and Control.

[28] Pan, D., Zheng, H., Xu, F., Ouyang, Y., Jia, Z., Wang, C., & Zeng H*, (2023). MSFR-GCN: A Multi-scale Feature Reconstruction Graph Convolutional Network for EEG Emotion and Cognition Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[29] Xu, F., Pan, D., Zheng, H., Ouyang, Y., Jia, Z., & Zeng, H*. (2024). EESCN: A Novel Spiking Neural Network Method for EEG-based Emotion Recognition. Computer Methods and Programs in Biomedicine, 107927.

[30] Wang, Z., Ouyang, Y., & Zeng, H*. (2024). ARFN: An Attention-Based Recurrent Fuzzy Network for EEG Mental Workload Assessment. IEEE Transactions on Instrumentation and Measurement.

[31]  Qian, D., Zeng, H., Cheng, W., Liu, Y., Bikki, T., & Pan, J. (2024). NeuroDM: Decoding and visualizing human brain activity with EEG-guided diffusion model. Computer Methods and Programs in Biomedicine, 108213.

[32]  H Zeng, Y Zhao, F Babiloni, M Tao, W Kong, G Dai (2024). A General DNA-like Hybrid Symbiosis Framework: An EEG Cognitive Recognition Method, IEEE Journal of Biomedical and Health Informatics

[33] Jia, Z., Ouyang, Y., Kong, X., Guo, Y., Li, Z., & Zeng, H*. (2025). A Novel Dual-Task Model for EEG-based Emotion and Cognition Recognition. IEEE Transactions on Instrumentation and Measurement, vol 74.

[34] Ouyang, Y., Liu, Y., Shan, L., Jia, Z., Qian, D., Zeng, T., & Zeng, H*. (2025). DAEEGViT: A domain adaptive vision transformer framework for EEG cognitive state identification. Biomedical Signal Processing and Control, 100, 107019.

[35] Jiankai Shi, Yue Zhao, Chu Wang, Hong Zeng*, Guojun Dai* (2025). EEGSNet: A novel EEG cognitive recognition model using spiking neural network. Biomedical Signal Processing and Control, 105, 107610

[36] Kong, X., Guo, Y., Ouyang, Y., Cheng, W., Tao, M., & Hong Zeng*. (2025). MT-RCAF: A Multi-Task Residual Cross Attention Framework for EEG-based emotion recognition and mood disorder detection. Computer Methods and Programs in Biomedicine, 108835.

[37]  Wenjie Cheng, Jun Tan, Lizhi Wang, María Trinidad Herrero, & Hong Zeng*,(2025). Fine-grained image generation with EEG multi-level semantics, Computer Methods and Programs in Biomedicine,Volume 269, 108909.

[38] Wang, C., Wang, Z., Herrero, M. T., Xu, T., Chu, F., Zeng, H.*, & Tao, M. (2025). Early diagnosis of mild cognitive impairment and Alzheimer’s disease using multimodal feature-based deep learning models in a Chinese elderly population. Asian Journal of Psychiatry, 104632.

[39] Wang, C., Yu, W., Xu, T., Zeng, H., González-Cuello, A., Fernández-Villalba, E., ... & Chu, F. (2024). Visual Event-Related Potentials under External Emotional Stimuli as Early Signs for Mild Cognitive Impairment. The Journal of Prevention of Alzheimer's Disease11(5), 1325-1338.

[40] Qian, D. , Liu, Y. , Zhang, Z. , Hattori, M. , Zeng, H. , & Tang, X.(2025) . SA-Divider: A Novel Automatic EEG Artifact Removal Method Based on Self-Attention Convolutional Neural Network. 2024 International Conference on Cyberworlds (CW). IEEE.

[41]Y. Ouyang, W. Cheng, L. Wang, X. Zhu and H. Zeng*,(2025) P3DL: A Privacy Preserving Personalized Distributed Learning Framework for EEG-based Cognitive State Identification, in IEEE Journal of Biomedical and Health Informatics, doi: 10.1109/JBHI.2025.3619419. 

[42]Liu,Y.;Palacio,M.-.;Bikki,T.;Toledo,C.;Ouyang,Y.;Li,Z.;Wang,Z.;Toledo,F.;Zeng,H.;Herrero,M.-.Machine Learning,PhysiologicaSignals,anEmotionaStress/Anxiety:PitfallanChallengesAppl.Sci.2025,15,11777.

[43]Liu Y.,  Zeng H., Hattori M., and Tang X.. DSN-Net: A Context-Modulated Dual-Stream Mamba Network for Cross-Subject EEG Anxiety Detection [C], 2025 International Conference on Brain-Computer Interface, Journal of Physics: Conference Series 3147 (2025) 012018, Shanghai, China. doi:10.1088/1742-6596/3147/1/012018

[44] Zhang, D., Guo, Y., Kong, X., Ouyang, Y., Li, Z., & Hong, Z*. (2026). MMoGCN: A multi-gate mixture of graph convolutional network model for EEG emotion and mood disorder recognition. Journal of Neural Engineering.













Books

You can access the teacher's

homepage by scanning the QR code

Total visits:10