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Efficient Simulation of QC LDPC Decoding on GPU Platform by CUDA

Bin Jiang
School of Telecommunication Engineering
Hangzhou Dianzi University
Hangzhow, Zhejiang, P.R. China, 310018
Jlangbin{@hdu.edu.cn

Abstract—An efficient parallel simulation scheme of quasi-
eyclic (QC) low-density parity-check (LDPC) decoding is
proposed to improve the simulation efficiency greatly. Tt
employs multi-threads with the multi-processors of a graphic
processing unit (GPU) to perform the simulation of LDPC
decoding in parallel. Other than full hardware based LDPC
decoding, it obtains good features of low cost, easy
programming complexity by using the compute unified device
architecture (CUDA) techniques. The CUDA also provides
parallel computing by the GPU with efficient multi-thread
computation and very high memory bandwidth. Based on the
proposed scheme, all bit nodes or check nodes can be updated
in an LDPC decoding iteration simultaneously. Therefore, it
provides an efficient and fast approach of QC LDPC decoding.

Keywords- LDPC codes; QC; parallel computation; GPU;
CUDA

L. INTRODUCTION

LDPC codes are a class of Shannon capacity approaching
channel codes developed recently [1, 2]. They can be
decoded efficiently by the belief propagation (BP) algorithm
or equivalent sum-product (SP) algorithm [2, 3]. Moreover,
they have been implemented with hardware in parallel [4].
QC LDPC codes are one category of LDPC codes where
their parity check matrixes have QC structure. The QC
structure not only makes the encoding much easier but also
reduces the decoding complexity for their easy addressing,
ie, finding the “1” in the matrix [5]. However, the
simulations of their decoding cost much time in a personal
computers (PCs) when the requirement of the bit-error-rate
(BER) performance is very high such as 107, In addition, the
energy costs are huge since it may simulate just for a single
code performance.

Other than PC computation platforms, there are some
other efficient simulation platforms for LDPC decoding as
the field programmable gate amay (FPGA) simulation
platforms [5], etc. The FPGA platform greatly accelerates the
simulation speed. But the cost of the FPGA platform is
expensive and it is not flexible enough to adopt different
LDPC decoding simultaneously. In addition, it has
quantization effect due to limited resources of physical and
logical units. Recently, GPU with CUDA techniques [6, 7]
are introduced in the communication calculations as LDPC
decoding, biomedical analyses and so on. [8, 9] introduce the
LDPC decoding simulations m a GPU with CUDA
techniques. But they just introduce the general LDPC
decoding in the GPUs. For LDPC codes with special QC
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structure, we introduce a more efficient algorithm proper for
the GPU platform by adopting QC structure to fit the multi-
threads GPU processing and simplify the calculations.

This paper is organized as follows. In section II, the
principles of the QC LDPC decoding is introduced. In
Section III, the parallel simulation of QC LDPC decoding on
GPU using CUDA is proposed to implement efficient
simulation platform. Then the computation complexity is
analyzed and compared with the scheme of simulation on
cenfral processing unit (CPU) in section IV. Finally, the
conclusion is drawn in section V.

II.  LDPC DECODING WITH LOGARITHM BP ALGORITHM

BP algorithm is efficient for LDPC decoding [1, 2]. Its
logarithm version (log-BP) can be described as follows.

Some notations: The set of the j-th wvariable node
connected to the i-th check nede is K(7)={i: H,, =1} and

H;; is the element of the check matrix H of the code with
index (i, j). The set of the i-th check node connected to the j-
th variable node is ps(;) = {j:H, =1- L{c;) is the initial

logarithm likelihood ratio (LL.R) of the codeword c;. x; and y;
are the /-th decided and received signal respectively. #; and
gy are the messages between the variable node j and the
check node i Their LLRs are L{(ry)=In[r;{(0)/r;(1)] and
L(gy)=In[g(0)/g;(1)] where #;{u) and g;(u) are the messages
of »; and gy decided as 0 or 1. O; is the LLR of the i-th
variable node of the codeword c;. N is the code length.
C=[cy,....cy]" is the codeword vector.

At an AWGN with variance ¢, the LDPC decoding can
be expressed as below:

Step (1) Initialization

L(Cz):]_'[l[ P(x;-:”yf)]zzyzfo_z (1)
plx,=-1]y)
Tiq, ) =L(r,) =0 @)

Step (2) Decoding process (iterations between the
variable and check nodes)

Step (2.1) Update the variable nodes and perform the
final decoding judgment.

Lig)=Lic)+ 2. L{r,) G)
JlEMGN

L(Q) = Lc) + Z L(”}i) )
JeM (i)

5[0 L@)=0 (5)
P, L@y <0



In this procedure, if 7-¢—0 (Mod 2), ¢ is the final
result. And if ¢ is the decoding result or the iteration
exceeds the maximum iteration times, it is finished.
Otherwise, go to step (2.2).

Step (2.2) Update the check nodes and then go to step
(2.1) to carry over the iterations.

1
L) = 2tanh '{ KF([)\.mnh[L(qi.,)/zl} (6)
PeK (N

And (6) can be calculated with much lower complexity by
some numerical processing. Firstly, some notations are
defined as follows.

L(g,)=a,f, 7

@, =sign[L{g, )] (8)

B = Lg,;)] %)

#(x) = log tanh(x/ 2) = log ‘i *1 (10)
o

Then (6) can be calculated by (11).
Lo =CI] @l 2 48] (1D
oK K
The LDPC decoding algorithm can be processed mainly
by additions and computations of #(x) which can be simply

solved in a function value table. And the QC structure of the
LDPC code makes the check matrix more regular. So the
whole decoding can be efficiently performed with parallel
structure with easy addressing of 1 in the matrix. Therefore,
it can be computed in the multi-core processors in parallel to
accelerate the intensive computations.

III. QCLDPCDECODING BY GPUS USING CUDA

A, Blief Introductions of the CUDA techniques

CUDA is a parallel computing architecture based on the
GPU developed by the well-known graphic corporation,
NVIDIA [6]. And it can be served as a general computing
device by direct accessing to the low-level hardware based
graphics applicable programmable interfaces (APIs) [8]. The
(GPU has more co-processors than the CPU and it is capable
of running multi-thread programs simultaneously for high
computation throughputs. With the CUDA techniques, the
GPU can execute numerical computations by employing a
great number of threads from the multi-core co-processors in
parallel. The GPU can operate as a coprocessor to the CPU
and it mainly process data-parallel, compute-intensive
portions of the calculations.

In the GPU computation, the threads can cooperate by
sharing data through the fast shared memory and executing
programs in parallel. It can copy data from the host (CPU) to
the device (GPU) and vice versa through the low-level API
calls that utilizes the device’s direct memory access (DMA)
with high performance [6]. Original GPU programming is
difficult since it uses special hardware based structions to
programming. But NVIDIA has developed a new easily
programmable CUDA technique to overcome this deficiency
by the CUDA’s parallel programming model with a C-like
standard programming language. Therefore, the GPU with
CUDA technique is especially well-suited for solving such

intensive calculations where the same program is executed
on many threads efficiently.

The batch of the multi-threads that executes a kemel is
mainly organized as a grid of the thread blocks in the
diagram of the GPU software architecture. Since limited
element co-processors in a GPU, the number of the parallel
computations may exceed the number of co-processors that
is the same to the maxinmum number of the threads. So the
threads must be synchronized and each batch of the
computation is performed in furn. In other words, each step
of the intensive calculation must be done in twn over the
limited threads from the corresponding co-processors in the
GPU. In the architecture of the NVIDIA’s GPU, each thread
is distinguished by its thread identity (ID) in each block
which is also identified by its block ID in each grid. Then the
thread 1D of a thread with index (tdx, tdy, tdz) in a three
dimension block (Dx, Dy, Dz) is indexed as (td.x+td.y X<
Dx+td.z X Dx A D). Therefore, the multi-threads in the GPU
can be executed for the parallel programs by the proper
thread ID indexes.

B.  Parallel OC LDPC decoding on GPU using CUDA

In the CUDA implementation of the log-BP algorithm, a
thread is assigned to calculate the message of a variable
node (VN) or a check node (CN) i the form of the
logarithm likelihood ratios (LLRs). And a more simplified
memory access version of the log-BP algorithm can be
proposed due to the good feature of a regular QC LDPC
mafrix structure. So the workflow of the algorithm can be
designed and shown in Fig. 1.

Initializatien of the CUDA computation
envirenment (Copy data from Hoest
{CPU+memory) to Device (GPU)} )

v

/GPU Kernel Modules

Initialize the LLRs of the variable and parity-
check nodes with equation (1) and (2) by the data
received from channel through direct memory
copy from the Host

v

Calculate the posterior LLRs from the variable
nodes with equation (3) and (4)

v

Check if the LDPC decoded codewords ¢hard
decision of the LLRs from the variable nodes by |—
{5)) satisfies the parity check matrix H True or

+ False reaching
Calculate the posterior LLRs from the parity max
check nodes with equation (73-(11) by a look-up
table for the nonlinear fimetion ®&)

iterations

Finish the CUDA computation environment
{Copy data from Device to Host)

v

Finish the CUDA computation of the QC LDPC
decoding
Fig. 1. The workflow for decoding LDPC codes with CUDA,
where the kernel modules means the program executed on
GPU in parallel with multi-threads.




From Fig. 1, the parallel CUDA implementation of the
LDPC decoding is concluded as follows which is similar to
that of [8]. However, the logarithm version of the LDPC
decoding is adopted in our algorithm. And the efficient
address of the messages by the properties of the QC LDPC
mafrix is proposed to further improve the parallel memory
access capability to speed up the LDPC decoding.

Step 1. Copy data to the global memory in GPU.

Copy required prior LLRs of the input data for the LDPC
decoding from host memory in PC to global memory in
GPU. And the LLRs are executed by the CPU s as the basic
calculation of the L(c;) in (1) where the {¢;} sequences are
the input raw data for decoeding. So all threads can acquire
the basic prior data in the global memory for computations.
These LLR data include a structure array .S containing L{r;;)
and L(gy) for calculating (3) and (11), two mapping arrays
indicating the positions where VN 7 and CN 7 can access
L(ry) and I(gy) in the array S. Another array of memory
units is used to temporarily store the codewords.

Step 2. Initialize L(r;;) and L(gy) in parallel by GPU.

Due to the lack of efficient calculation of division, (1) is
calculated sequentially by the host CPU. Then the algorithm
initializes the LLRs according to (2). Each thread is assigned
to a variable node and computes all VN LLRs as L(g;) with
the mapping array.

Step 3. Calculate and exchange messages (L.LRs) from the
check node to the variable node.

Compute L(r;;) at the check nodes in parallel by (7)-(11).
A thread is responsible for a particular check node 7, and

calculates all respective xp in (8), ﬂf,j in (9) and then Z(r;)

in (11) with a look-up-table like array to store the value of
the complex function #(x) which is calculated in advance. In

addition, the shared memory on device is adopted to
accelerate the massive number of looking up table for
function value in the calculation of (11).

Step 4. Calculate current estimated codeword for judgment.

Following the steps of (4) and (5), N (code length) threads
are assigned to calculate the codeword. If the estimated
codewords satisty (5) or the iterations reach the specified
maximum iterations, finish the LDPC decoding for the
codewords with success decoding or incomplete decoding
and go to step 6 to output the codewords. Otherwise, carry
out step 5 for further iterations.

Step 3. Calculate and exchange messages (i.e. LLRs) from
the variable nodes to the check nodes.

Compute L(g;;) at the variable nodes in parallel by (3) and
the corresponding L((;) in (4) for further estimation of the
input code words in (5). Each variable node is also assigned
to a thread for parallel computation just as each check node
does. So all threads can simultaneously calculate £.(g;) and
L{Q;) with high efficiency. After that, go to step 3 to
continue the iterations.

Step 6. Output the codewords to the host.

The decoded codewords are copied from the GPU’s global
memory to the host memory for final output.

C.  Architecture of the GPU CUDA platform for the QC
LDPC decoding with efficient memory access technigue

The architecture of the threads in the CUDA that
executes a kernel is organized as a grid of thread blocks
shown in Fig. 2. A batch of threads can cooperate by sharing
data through the fast shared memory and synchronizing
executions efficiently. So they have good features of high
memory access bandwidth for huge parallel data throughput.

DEVICE GPU GHiD
ELOCE (0, 0 BLOCE (1, 0 BLOCE 0%, 0
Thread (0,0) "
. ; ; LI ) =
= = E
Thesad fra)
ELOCRGRD ELOCE(L 1Y BLOCE (X, 1}
£ . .. v
= = =
- - L] .
L] L L] .
. . b .
BLOCE (0,Y) BLOCE (1,¥) BLOCE (X, ¥}
i e LU :
< z s
EERMNEL 1 KERNEL 2 KEENEL K
LI
HOST CPU+MEMORY

Fig. 2. The architecture of the GPU CUDA platform with multi-
thread calculation [6].

In Fig. 2, the huge calculation power is mainly caused by
the GPU with the multi-processor hardware and the
corresponding multi-thread processing capability. The
operation of an actual application must be modified as a
parallel calculation structure to fit the GPU multi-threads
calculation. Otherwise, the GPU power can be utilized for a
program with serial structure and it even worse than the
ordinary CPU-based scheme since the computation of a
single processor in a GPU is much slower than that of an
ordinary CPU and the access time of the global memory is
also very longer than that between a CPU and a memory in a
personal computer. From [6], if the calculations scale of an
application is larger than all number of the threads in the
GPU at a time, the parallel calculation must be arranged for
several batches. Then the synchronization mechanism must
be employed to guarantee the computation integrity. And it
can be implemented with the subroutine “_syncthreads()” in
CUDA programming. Since the calculation ability of each
sub-processor in GPU is fixed, the computation efficiency of
LDPC decoding mainly lies on the speed of the interface, i.e.
the speed bottleneck between the co-processors and the fast
share memory or the slow global memory. With the parallel
nature of LDPC decoding mentioned in section II, the
CUDA programming need special design of the data storage
techniques to improve the memory access efficiency,



especially the reduction of the access of the global memories
in the GPU. And it can be implemented by using the quasi-
cyclic structure of the QC LDPC parity-check matrix in the
decoding iterations. The memory access scheme can be
shown in Fig. 3.

Non-zero QC sub-matrix representation of the code

Ogp| 0 | 0 [Ops| O | Ogs|Opg| O [Ops— Qo

0 [O11[|Oz| 0 [O14] 05| 0 [O5] O (a}

0 1021 0 (O3] 0 |O25(Ozs| 0 |Oop

0; 1s the cyclic offset value of an identity matrix

Parallel BP iterations for the variable nodes with

the matrix index in the form of sparse storages Storage table for the

message propagations of
the variable nodes

12211211 |2]1 (b)
3 3 2 3 3
Sequential update in
3 each parallel iteration

Paralle]l BP iterations for the check nodes with
the matrix index in the form of sparse storages

Storage table for the 1 4 [ 7 9
message propagations of
the check nodes 2 3 5 i) 8 (C)

2| 4 6|7 9

»
Sequential update in each parallel iteration

Fig. 3. The storage architecture of a QC LDPC code matrix in a
GPU CUDA platform with multi-thread calculation [6].

The memory access approach can be described as follows.
In Fig.3, The sparse parity-check matrix of a QC LDPC code
is detonated as a basic matrix (A<N) of the sub-matrix O,
with subscript row-i and colwmn-/ which is the circular
permutation of an identity matrix. And the circular offset
value of each sub-matfrix (;; is o, shown in Fig.3 (a)
respectively. Then the original complex QC LDPC matrix
can be compactly represented with a small basic matrix
shown in Fig.3 (a). So the updates of the messages in the
variable and the check nodes can be described in Fig.3 (b)
and Fig.3 (c) with the way of each sub-matrix node
calculation and addressing in sequential. Suppose o;; is the
offset value of the sub-matrix, the message updates of the
variable nodes can follow the equation (3) and the
calculations are carried out according to each variable node
in the basic matrix shown in Fig.3 (b). So the access to the
variable and check nodes in the compactly stored memory
can be illuminated as follows. Notice that both row and
column sequence number, starting at 0, from the cyclic offset
value o,; with sub-matrix @, (NxN), the real row and column
indexes of the £-th node in (J;; are calculated as (12),

R=(ixN)+(N+o,,—k+1)modN
C=(jxN)+(N—o,, +k-1)modN’

where R and C is the actual row and column index of the &-th
node in ¢J;; in an LDPC code mafrix. So the memory used to

(12)

store the position of all “1” in the matrix is reduced to 1/N of
that of randomly organized code matrix. Therefore, the
memory access time can be reduced to 1/N too under the
same memory access approach. Meanwhile, the messages
from the variable and the check node can be stored in a
shared memory of the GPU and the data can be exchanged
with the original channel input mformation in batches o
integrate the memory access processing.

Finally, the method of a CUDA based program code for
QC LDPC decoding can be carried out as the way of the grid
and the threads. Or it can be represented in the form of
CUDA code such as “CUDALDPC DEC <<< grid, threads
>>>  (message, matrix N, matrix M, matrix data,
channel variance, ...)”, where all parameters in the function
CUDALDPC DEC are input parameters of the algorithm in
Section TI. Therefore, the update of the messages from the
variable nodes and the check nodes are executed
alternatively with highly parallel iterations which can utilize
the multi-threads processing of the GPU and greatly improve
the calculation efficiency of LDPC decoding.

IV. NUNERICAL SIMULATIONS AND RESLUTS ANALYSES

By the efficient parallel simulation scheme proposed in
section I, we can present the performance results of the
parallel BP algorithm of LDPC decoding in a GPU based on
the CUDA. The experiment is performed under a PC with
Intel E5300 CPU of 2.6 GHz, 2GB 400MHz DDR memory,
and a NVIDIA 9600GT GPU with 512MB graphic memory.
The softwares are CUDA Toolkit 2.3, CUDA SDK 2.3 and
CUDA driver 190.38. The low rate QC LDPC codes [10] are
adopted for testing the performance of the code. The LDPC
code length is 5120 (code rate 1/5), 6144 (code rate 1/6) and
10704 (code rate 1/6) respectively in order to investigate the
mfluence of the computation scale on the performance of the
same GPU platform. In the simulations, each E/N, will be
rnun until a specified number (e.g. 100) of error frames occur
or a total of 0.8 million trials have been run. The maximum
iterations are 50 for each LDPC frame decoding.

With above parameters, the bit emror rate (BER) results
for all QC LDPC cases in ordinary CPU platform (serial C
program codes) and the proposed GPU platform (parallel
CUDA program codes) are almost similar. However, the
speed of two scheme are different and the relative speed of
each LDPC frame decoding measured in millisecond (ms)
with three different case of code length is shown in Fig. 4.
From Fig. 4, we can obtain the Speedup of GPU versus CPU for
three different matrices by using 64 threads per block of NVIDIA
9600GT GPU card and it is shown in Fig. 5. From Fig. 4 and

Fig. 5, the simulation of the case with LDPC code length
5120 and 6144 by the GPU is just a little faster than that by the
GPU. However, the comparison is remarkable when the code
length turns to 10704 where the former is ahout7 times of
that of the CPU, which is much faster than the latter. So the
speedup of the two simulation scheme with different LDPC
code length shown in Fig. 5 indicate that much more
efficiency can be improved with much longer code length.
And the reasons are listed below. The memory access in the
GPU, especially the global memory accessing, requires
comparable time when compared to that of the parallel



iteration of LDPC decoding. When the code length is short,
the overhead of global memory access occupies quiet large
portion of full execution time. However, when the code
length grows large, the portion of memory access in all
execution time decreases and the time consumption of LDPC
decoding increases a lot. So we can get the conclusion as
shown in Fig. 5 that more code length in LDPC decoding
leads to more computation efficiency.
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Fig. 4. Average running time for the QC LDPC codes with three
different code length (5120. 6144 and 10704) by using 64 threads
per block in the GPU.
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Fig. 5. Speedup of GPU versus CPU for three different matrices by
using 64 threads per block of NVIDIA 9600GT GPU card.

10704

Furthermore, if there are sufficient independent arithmetic
instructions that are arranged for operation while the GPU is
waiting for the global memory access, much of this global
memory latency can be hidden by the thread scheduler just
like an assembly line [7]. This result also verifies that CUDA

is more suitable for compute-intensive, highly parallel
computation where the time consumptions of the global
memory access can be neglected in such computations.

V. CONCLUSIONS

An efficient parallel simulation scheme of QC LDPC
decoding is proposed to accelerate simulation speed greatly.
It employs a GPU to perform parallel simulation of LDPC
decoding. Other than full hardware based schemes, it adopts
lower costs and program complexity of CUDA technology.
The GPU also provides parallel computation with highly
multi-thread co-processors and very high memory bandwidth.
Based on the sparse description and parallel processing of a
QC LDPC decoding mafrix, the proposed scheme updates all
variable or check nodes in an LDPC decoding iteration
simultaneously. In addition, the bottleneck of the simulation
efficiency by the memory access is also discussed to explain
the speedup among different LDPC code lengths. Therefore,
the proposed method provides an efficient and fast approach
of LDPC decoding and the error floors.
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