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Bin Jiang , Yuefei Cao, Jianrong Bao , Senior Member, IEEE, Chao Liu , and Xianghong Tang

Abstract—A novel piecewise normalized bistable stochastic res-
onance (PNBSR) strengthened cooperative spectrum sensing is
established by the PNBSR, residual covariance matrices, credi-
bility weighted matrix fusion and a convolutional neural network
(CNN) classification at low signal-to-noise ratios (SNRs). First,
the PNBSR based on the traditional bistable stochastic reso-
nance (TBSR) is proposed to improve the SNRs of received
signals. Second, the output of the PNBSR is demodulated to
obtain in-phase (I) and quadrature-phase (Q) covariance matri-
ces. Third, the I/Q covariance matrices from different secondary
users (SUs) are Cholesky decomposed to construct residual
covariance matrices in a fusion center (FC). Subsequently, a
new credibility weighted coefficient is proposed to fuse resid-
ual covariance matrices of the SUs. Finally, both training and
test samples of the fusion detection statistics are fed into the
CNN to train a high-performance classification model of cooper-
ative spectrum sensing. The main innovations include the PNBSR,
optimization index, Cholesky decomposition-based matrix cancel-
lation to construct residual covariance matrices and credibility
weighted matrix fusion. Simulation results show that the SNR
of received signals strengthened by the PNBSR is improved by
3.36 dB other than received signals on average, which is 0.22dB
larger than that of the TBSR. The detection probability of the
proposed scheme also outperforms those of the support vector
machine (SVM) and CNN schemes by 77% and 75% at −15 dB,
respectively.

Index Terms—Stochastic resonance, credibility weighted
matrix fusion, residual covariance matrices, convolutional neural
network.

I. INTRODUCTION

AT PRESENT, with the rapid development of wireless
communication technologies, two problems arose in lim-

ited spectrum resources [1], [2]. One was more spectrum
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resources required in wireless devices. Another was the low
utilization of the authorized frequency band [3]. Spectrum
sensing was one of significant techniques in cognitive radio
(CR) to improve spectrum utilization [4]. Traditional spec-
trum sensing mainly included the energy detection (ED) [5],
matched filter detection (MFD) [6], and cyclostationary feature
detection (CFD) [7]. The ED had low computational com-
plexity and no requirement for prior information of a primary
user (PU). However, the performance of it was vulnerable
to noise uncertainty and poor at low signal-to-noise ratios
(SNRs) [8]. The MFD had advantages of short detection dura-
tion and satisfactory detection precision, but it was required for
prior information of a PU [9]. Despite of satisfactory detection
precision at low SNRs in the CFD, it had high computational
complexity and long detection duration [10].

Given good properties of reliable communications, multiple-
input multiple-output (MIMO) devices had been widely
applied in spectrum sensing algorithms [11]. Most of them
relied on eigenvalues of the covariance matrices [12], such
as maximum and minimum eigenvalue detection (MME) [13]
and variance detection among eigenvalues [14], [15]. However,
only partial information in the covariance matrix was extracted
to construct detection statistics. These statistics was progres-
sive. For instance, a decision threshold was approximate and
a satisfactory performance required many sample points with
dramatically increased computational complexity and latency.
Therefore, most MIMO algorithms had slight performance
improvement compared with those of traditional ones.

To avoid the derivation of the decision threshold and prob-
lems caused by their gradualness, machine learning (ML) was
introduced in spectrum sensing [16]. It was equipped with the
ML technique and mainly included feature statistics construc-
tion, classification model training and testing. By this method,
the decision threshold was automatically generated during the
ML training. For example, spectrum sensing methods with
support vector machine (SVM) were proposed in [17] and [18],
in which the received signals and related signal energy were
input into the SVM as a feature vector to detect PU signals.
However, two major disadvantages remained as follows. First,
the detection performance was strictly limited by the choice of
penalty parameters and kernel functions in the SVM, and no
specific rules were set on the selection of them. Second, the
classification ability of the SVM was limited and only suitable
for small samples training. Then, neural networks attracted
more attention because of their superior performance in many
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fields. In particular, the convolutional neural network (CNN)
had a special network structure by extracting image features
efficiently to prompt transforming spectrum sensing into image
recognition. In [19] and [20], the gray image of received sig-
nals were directly fed into a CNN as characteristic statistics
to train the CNN. Then, the trained CNN was used to detect
PU signals with new gray images. By this method, the con-
struction of detection statistics determined the upper limit of
detection performance. The optimization by the scheme just
approximated the upper limit.

The introduced ML solved the decision threshold setting,
but it did not improve the detection accuracy at low SNRs. One
signal improvement was proposed to make the detection statis-
tics under different assumptions more distinguishable. The
energy detection methods in [21] and [22] used stochastic res-
onance (SR) to improve the SNRs of received signals for better
detection. The SR was firstly proposed by Benzi et al. in 1981
to investigate the Earth’s palaeo-meteorological glaciers [23].
It was a nonlinear phenomenon by using noises to enhance
the detection of weak signals. Initially, it only performed well
in weak signal processing with frequencies and amplitudes far
less than 1. To better utilize the SR in communications, scale
transformation was used in the SR to enhance large-parameter
signals [24]. With the deepening of the SR theory and appli-
cation of the traditional bistable stochastic resonance (TBSR),
the latter has suffered from the problem of easily saturated out-
put [25] and the potential well barrier was rather high [26].
For these problems, the transform of the potential model was
very helpful in improving the performance of the SR. In [27],
a linear SR model was proposed to solve the above problems.
However, the consistent slope of the potential well wall easily
caused the output of the SR to produce more serious distortion
by the noises.

Another solution to improve the detection performance
at low SNRs was the cooperation among secondary users
(SUs) in cognitive radio networks (CRNs). The cooperation
is divided into the hard decision fusion (HDF) and soft fusion
according to data types. In the HDF, only the decisions of
the participating SUs were shared and the collected data in
case of soft fusion was shared in the fusion center [28]. The
HDF mainly included the AND, OR, K rules and the linear
quadratic combining rule. In [29], the optimal decision thresh-
old was investigated for the HDF. Although the HDF improved
the detection accuracy slightly at low SNRs, it still needed to
set the decision threshold K artificially regardless of the dif-
ferent SNR environments of the SUs. For the soft fusion, there
was actually no unified and effective strategy at present.

According to current flaws of the aforementioned spec-
trum sensing methods, especially the poor recognition rate
and the imprecise decision threshold at low SNRs, an
efficient cooperative spectrum sensing is proposed by a
CNN and piecewise normalized bistable stochastic resonance
(PNBSR) strengthened residual covariance matrices. Besides,
the main contributions of the proposed scheme are summarized
concisely as follows.

• Piecewise normalized bistable stochastic resonance-
based signal enhancement to improve the SNR of the
received signals: To further improve the performance of

the SR, a PNBSR system is proposed to solve the output
saturation and high potential well barrier in the TBSR.
Compared with the TBSR, the proposed PNBSR has a
lower potential well barrier and flatter potential well wall.
Thus, it easily transfers the noise energy to the useful
signal one for better performance enhancement.

• New optimization index ψ by the covariance matrix
to solve the optimal PNBSR parameter a: The system
parameter a is the key for the PNBSR to generate the
SR phenomenon. To optimize the parameter a efficiently,
a new optimization index ψ by the covariance matrix
replaces the traditional optimization index SNRout , i.e.,
the SNR of the SR output. Without prior information,
the PU signals cannot be separated from noises and thus
SNRout is hard to be calculated. For ψ, it has the same
variation trend as the SNR. SNRout reaches the maxi-
mum, as well as ψ do simultaneously. But ψ requires
little computation and no prior information during the
optimization of the system parameter a.

• Matrix cancellation with Cholesky decomposition to
reduce the noise interference for better detection: At low
SNRs, the influence of PU signals is negligible com-
pared with that of the noises on the covariance matrices.
Therefore, for the CNN processing, the changes in the
covariance matrix with or without PU signals are eas-
ily falsely judged by the randomness of noises, thereby
causing the CNN unable to make correct decisions at
low SNRs. Before feeding the covariance matrix into
the CNN, a matrix cancellation by Cholesky decom-
position is adopted to reduce the noise interference.
Therefore, the influence of PU signals on the covariance
matrix is enhanced to improve significantly the detection
performance.

• Efficient multiuser cooperation, called credibility
weighted matrix fusion, to improve the detection accu-
racy of the SUs in cognitive radio networks: A new
multiuser cooperation, called credibility weighted matrix
fusion, is proposed to improve the detection performance
by both reducing the gradualness of the statistical covari-
ance matrices and improving the average SNR of the SUs
with credibility weights. Traditional cooperations mainly
adopt the voting criterion with the minority obeying the
majority to reduce the detection error probability caused
by the outburst communication deterioration. However,
they only provide a small performance boost and it is
unfair to the SUs under different SNRs. The proposed
cooperation considers the SNR in each SU and it then
adopts a credibility weighted coefficient to achieve both
more fairness and better performance.

The remainder of this paper is organized as follows.
Section II introduces a system model of spectrum sensing in
CR networks. Section III presents a new cooperative spec-
trum sensing algorithm. The computational complexity of the
proposed and some other schemes are analyzed and com-
pared. Section IV provides simulation results and experimental
analyses to validate the good performance of the proposed
spectrum sensing. Finally, Section V summarizes the whole
paper.
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Fig. 1. Proposed cooperative spectrum sensing model.

II. SYSTEM MODEL OF SPECTRUM SENSING

IN COGNITIVE RADIO NETWORKS

Suppose that L SUs with M antennas are configured in
a CRN and a PU is located within the detection range of
the SUs [30]. The spectrum sensing is modeled as a binary
hypothesis under the Neyman-Pearson and Bayes tests and it
is expressed as

yi ,j (n) =

{
vi ,j (n) H0

s(n)hi ,j (n) + vi ,j (n) H1,
(1)

where yi ,j (n), vi ,j (n) and hi ,j (n) (i = 1, 2, . . . ,L, j =
1, 2, . . . ,M , n = 1, 2, . . . ,N ) represent received signals, addi-
tive white Gaussian noise (AWGN) with zero mean and a
variance of σ2n , and channel gain at the j-th antenna and n-th
sample in the i-th SU, respectively. L is the total number of
the SUs. M is the total number of antennas in a SU. N is
the number of sampling points in one observation obtained in
a sensing slot. s(n) ndicates a PU signal received by a SU.
Hypotheses H0 and H1, respectively, denote the hypotheses
of the presence or absence of a PU. The signals received by
the i-th SU is represented as

Y i (n) =
[
yi ,1(n), yi ,2(n), . . . , yi ,M (n)

]T

=

⎡
⎢⎢⎢⎣

yi ,1(1) yi ,1(2) · · · yi ,1(N )
yi ,2(1) yi ,2(2) · · · yi ,2(N )
...

...
...

...
yi ,M (1) yi ,M (2) · · · yi ,M (N )

⎤
⎥⎥⎥⎦. (2)

The main procedures of the cooperative spectrum sensing
are designed and shown in Fig. 1 and it is divided as follows.
The adjacent SUs with multiple antennas receive signals from
the same PU. The received signals are fed into the piecewise
normalized bistable stochastic resonance (PNBSR) to improve
the SNRs. Then two-channel features are extracted with the
matrix cancellation by the Cholesky decomposition. In a fusion
center (FC), the proposed credibility weighted matrix fusion
processes the two-channel features from different SUs to

obtain the fused features. Finally, the trained CNN detects the
presence or absence of PU according to the fused features.

The detection performance of spectrum sensing is mainly
evaluated by the following three indicators, namely, the detec-
tion probability (Pd ), false alarm probability (Pf ), and missed
alarm probability (Pm ), respectively. They are denoted as⎧⎨

⎩
Pd = P(D1|H1)
Pf = P(D1|H0)
Pm = P(D0|H1)

, (3)

where D1 and D0 denote the hypotheses of the presence and
absence of a PU, respectively, and it is determined by a SU
detector. The definitions of the aforementioned three items are
listed as follows.
Pd : when a PU is present, the SU determines the probability

of its presence.
Pf : when a PU is absent, the SU determines the probability

of its presence.
Pm : when a PU is present, the SU determines the proba-

bility of its absence.

III. COOPERATIVE SPECTRUM SENSING WITH CNN
AND RESIDUAL COVARIANCE MATRICES

STRENGTHENED BY THE PNBSR

In this section, an efficient cooperative spectrum sensing
with residual covariance matrices strengthened by the PNBSR,
credibility weighted matrix fusion, and CNN is proposed. It
mainly includes the PNBSR to improve the SNR of received
signals, the credibility weighted matrix fusion for residual
covariance matrices, and the CNN classification. Finally, the
complexity analysis of the whole scheme is presented.

A. Cooperative Spectrum Sensing With Enhanced Residual
Covariance Matrices

QPSK signals are widely used for excellent anti-noise char-
acteristics and frequency band utilization. Thus, a PU signal
with QPSK modulation is expressed as

s(t) = Ĩ cos(wt)− Q̃ sin(wt)

= A cos(wt + θ), (4)

where cos(wt) and sin(wt) are carriers. w and θ represent
carrier frequency and phase, respectively. Ĩ and Q̃ , respec-
tively, are messages carried by the In-phase (I) and quadrature
(Q) orthogonal signals. Then, a SU digital receiver converts
the continuous domain signal s(t) to a discrete sequence s(n)
under a sampling rate fs . Finally, s(n) is expressed as

s(n) = Ĩ cos(wn/fs)− Q̃ sin(wn/fs)

= A cos(wn/fs + θ). (5)

Given a received signal matrix of the i-th SU, i .e.,Y i (n) =
[yi ,1(n), yi ,2(n), . . . , yi ,M (n)]T containing M signals accord-
ing to (1) and (2), the dimension of each signal is N. Then,
the matrix is fed into a nonlinear system, and it is expressed
with Langevin equation as

dx

dt
= −dU (x )

dx
+ s(t) + v(t), (6)

Authorized licensed use limited to: HANGZHOU DIANZI UNIVERSITY. Downloaded on October 18,2023 at 00:43:50 UTC from IEEE Xplore.  Restrictions apply. 



1170 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 9, NO. 5, OCTOBER 2023

where x is the output of the nonlinear system. s(t) and v(t) are
the PU signal and noise, respectively. U(x) indicates the poten-
tial function of the SR system. Different nonlinear potential
functions represent different nonlinear systems, and they can
be expanded into polynomial functions by using the Taylor
series expansion as

U (x ) = a0 + a1x + a2x
2 + a3x

3 + · · · . (7)

The potential function of the TBSR is then expressed as

UTBSR(x ) = −a

2
x2 +

b

4
x4, (8)

where a and b are nonzero system parameters. There are two
steady states x = ±√a/b and one unstable state x = 0. The
height difference between the steady state and the unstable
state is calculated by

ΔUTBSR =
a2

4b
. (9)

In additional, the Kramers rate (rk ) is also a crucial index
for the SR. In [27], rk is defined as the rate at which a transi-
tion occurs between the steady states of the potential function.
It reflects the ability of the output signals to follow noisy
input signals. When the nonlinear system is only affected by
noises, the Brownian particles switch between the steady states
according to rk in the potential wells. rk is numerically the
reciprocal of the mean first passage time and it is defined as

rk = μ
ωA
2π

exp

(
−ΔU

D

)
with μ =

√
U ′′(0) +U ′′′(0) , (10)

where μ is the correction factor and ωA is the vibrational
angular frequency of the Brownian particle at steady states.
U

′′
(0) and U

′′′
(0) are the second- and third-order derivatives

of U(x) under x = 0, respectively. And rk in the TBSR is then
represented as

rTBSR =
a√
2π

exp

(
− a2

4bD

)
, (11)

D =
σ2n
2
. (12)

The large well barrier ΔU and steep well wall reduce the
Kramers rate and cause the saturation to cut the enhancement
of the SR system [27]. To solve them, the coefficients in the
polynomial (7) are re-optimized to find a suitable potential
function. Suppose that the highest degree of U(x) is 4, since the
derivative of a constant is 0 and the derivative of a linear term
is constant. So, it is equivalent to a constant force, and thus
their effects are not considered. Therefore, the optimization
objective polynomial is expressed as

U (x ) = a2x
2 + a3x

3 + a4x
4. (13)

Since the term of the third degree has the property of low-
ering the potential well barrier and smoothing the potential
well wall, the parameter a2 is optimized by fixing a3 and a4,
and then a new potential function is constructed. The final
optimization results are shown in Fig. 2.

In Fig. 2, SNRout exhibits an approximately symmetric
behavior with respect to the parameter a2, and the maximum

Fig. 2. SNRout of U(x) with different parameter a2.

Fig. 3. The potential function of the bistable system.

SNRout is achieved given a2 = 0. Therefore, the term of
the third degree in (13) can be set to 0 without affecting the
enhancement of U(x) on input signals. Hence, a piecewise
normalized bistable stochastic resonance with the TBSR is
generated. The piecewise potential function is expressed as

UPNBSR(x ) =

{−a
3 x

3 + b
4x

4 x ≥ 0
a
3 x

3 + b
4x

4 x < 0.
(14)

where the term “piecewise” in the PNBSR indicates the poten-
tial function as a piecewise function. Given that the traditional
SR system is only used in strengthening weak signals, like sig-
nals with a frequency and amplitude far less than 1 Hz, the
SR system must be normalized for large-parameter signals.

There are two steady states x = ±a/b and one unstable
state x = 0. The height of the well barrier of the PNBSR is
calculated by

ΔUPNBSR =
a4

12b3
. (15)

In Fig. 3, when a = b, the potential well barrier of the
PNBSR is lower and the potential well wall is flatter than
those in the TBSR. According to (10), the Kramers rate of the
PNBSR is expressed as

rPNBSR =
a
√
a√

2bπ
exp

(
− a4

12b3D

)
. (16)
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Fig. 4. The Kramers rate rk of the PNBSR and TBSR versus D for different
system parameters.

To further compare rk in the PNBSR and TBSR, the rela-
tionships between rk and noise intensity are plotted with three
sets of system parameters in Fig. 4. Given a = b, rk of the
PNBSR is larger than that of the TBSR, and thus the PNBSR
has a stronger ability to follow the input data.

Given that the traditional SR system is only used in
strengthening weak signals, e.g., signals with a frequency and
amplitude far less than 1 Hz, the SR system must be normal-
ized for large-parameter signals. Then (6) can be normalized
as

z = x
b

a
, (17)

τ =
a2

b
t . (18)

By substituting (17) and (18) into (6), the PNBSR system
is given as

a3

b2
dz

dτ
= ±a3

b2
z2 − a3

b2
z3 + s

(
bτ

a2

)
+ v

(
bτ

a2

)
. (19)

The normalization is equivalent to a second sampling. For
s(t), the frequency is reduced to b/a2. For AWGN, the inde-
pendence of random variables allows noises to be viewed
as

v

(
bτ

a2

)
= v(τ). (20)

Thus, the final PNBSR system is given as

dz

dτ
= ±z2 − z3 +

b2

a3
s

(
bτ

a2

)
+

b2

a3
v(τ), (21)

where a and b are the key parameters to generate the SR. The
details of optimizing a and b are discussed later. Suppose that
the current SR system matches Y i (n). Given Y i (n), the SR
system outputs Y i_SR(n) and it is represented as

Y i_SR(n) =
[
sSR(n)hi ,1(n) + vi ,1_SR(n), . . . ,

sSR(n)hi ,M (n) + vi ,M _SR(n)
]T
. (22)

Fig. 5 shows the input and output of the PNBSR.
Subplots 5(a) and 5(b) are the time domain waveform and

spectrum of received signal. Subplots 5(c) and 5(d) are the
time domain waveform and spectrum of the output signals.
The signal amplitudes presented in Fig. 5 are results of nor-
malization amplitudes rather than the actual ones of signals.
According to (21), although the amplitudes of received signals
are reduced after the PNBSR compared with those without
the PNBSR processing, the amplitudes of the PU signals
and noises are reduced by the same factor. In addition, the
PNBSR significantly reduces noises, especially the parts of
high frequency. In the frequency domain, the SNR is calculated
by taking the square of the amplitude of the frequency con-
taining the PU signals. And they are divided by the sum of the
squares of the noise amplitude over the entire frequency range.
Therefore, the SNR is independent of the amplitudes. Under
reduced high-frequency noises, the SNRs of the output signals
of the PNBSR increases dramatically, thereby improving the
qualities of received signals.

In [31], existing researches indicate that the difference
between s(n) and sSR(n) is the amplitude. Subsequently, it
is regarded as

sSR(n) =
1

λ
s(n)(λ > 1). (23)

Due to the features of I /Q signals of sSR(n), the CNN can
totally discriminate all feature differences under hypotheses
H0 and H1 by using the I and Q components of sSR(n) from
orthogonal demodulation. Then, the I/Q signals of Y i_SR(n)
are calculated respectively as

I i (n) = Y i_SR(n) cos(ωn/fs), (24)

Q i (n) = Y i_SR(n) sin(ωn/fs). (25)

In traditional orthogonal demodulation, a low-pass filter is
required to filter out signals other than the low frequency to
extract the information carried by QPSK signals. However,
given that extracting information is unnecessary in spectrum
sensing, the proposed algorithm does not require a filter. The
hardware complexity can thus be reduced. Then, covariance
matrices of I i and Q i are computed as

E
[
YY H

]
= E

[
SSH

]
+ E

[
VVH

]
= RS +RV , (26)

where Y, S, and V represent matrices of received signals, PU
signals, and noises, respectively. RS and RV are covariance
matrices of S and V. Thus, covariance matrices of I i and Q i

are denoted as

Ri_I = E
[
I iI

H
i

]
= E

[
(Si_SR +Vi_SR)2cos2(ωn/fs)

]

= E
[
S i_SR

2cos2(ωn/fs)
]
+ E

[
V 2

i_SRcos
2(ωn/fs)

]

+ 2E
[
S i_SRV i_SRcos

2(ωn/fs)
]
, (27)

Ri_Q = E
[
Q iQ

H
i

]
= E

[
(S i_SR +V i_SR)

2sin2(ωn/fs)
]

= E
[
S i_SR

2sin2(ωn/fs)
]
+ E

[
V i_SR

2sin2(ωn/fs)
]

+ 2E
[
S i_SRV i_SRsin

2(ωn/fs)
]
, (28)

where S i_SR and V i_SR are the SR output of S i and
V i . Due to the independence among deterministic signals
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Fig. 5. The input and output of the PNBSR system.

and noises, the covariance matrices of I i and Q i are
transformed to

Ri_I = RS i_I _SR
+ 2E

[
S i_SRcos

2(ωn/fs)
]
E [V i_SR]

+ E
[
cos2(ωn/fs)

]
E
[
V i_SR

2
]

RS i_I _SR
= E

[
S i_SR

2cos2(ωn/fs)
]
, (29)

Ri_Q = RS i_Q_SR
+ 2E

[
S i_SRsin

2(ωn/fs)
]
E [V i_SR]

+ E
[
sin2(ωn/fs)

]
E
[
V i_SR

2
]

RS i_Q_SR
= E

[
S i_SR

2sin2(ωn/fs)
]
. (30)

In [31], when the AWGN with zero mean and variance σ2n
passed through the SR system, the probability density function
of the output signals can be approximately expressed as

p(x ) = 2

(∫ x+

x−
e−

a2

Db
U (x)dx

)−1

× 2e−
a2

Db
U (x). (31)

Given that p(x) is symmetric, its mean and variance are
calculated respectively by

E [X ] =

∫ +∞

−∞
xp(x )dx = 0, (32)

E
[
X 2 − E2[X ]

]
= E

[
X 2
]

=

∫ +∞

−∞
x2p(x )dx ,

= ξ2n (33)

where ξ2n is a variable only related to σ2n . Then, (28) and (29)
turn into

Ri_I = RS i_I _SR
+ ξ2i_nE

[
cos2(ωn/fs)

]
IM×M , (34)

Ri_Q = RS i_Q_SR
+ ξ2i_nE

[
sin2(ωn/fs)

]
IM×M . (35)

Under different hypotheses, the statistical covariance matri-
ces of the I/Q signals are represented as

I : ξ2i_nE
[
cos2(ωn/fs)

]
IM×M

Q : ξ2i_nE
[
sin2(ωn/fs)

]
IM×M

}
H0

I : RS i_I _SR
+ ξ2i_nE

[
cos2(ωn/fs)

]
IM×M

Q : RS i_Q_SR
+ ξ2i_nE

[
sin2(ωn/fs)

]
IM×M

}
H1 . (36)

In practice, the statistical covariance matrices are only
estimated by the sample covariance matrices and they are
defined as

Ri_I ≈ ~Ri_I =
1

N
I iI

H
i

Ri_Q ≈ ~Ri_Q =
1

N
Q iQ

H
i , (37)
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Fig. 6. Residual covariance matrices of I and Q phase signals under hypotheses H0 and H1.

where R and ~R indicate the statistical covariance matrix and
sample covariance matrix, respectively.

There are usually several SUs in a CRN. Therefore, a
new cooperation, called credibility weighted matrix fusion,
is employed to improve the detection accuracy. Assume that
there are L SUs for cooperative spectrum sensing. For credi-
bility weighted matrix fusion, each SU sends their ~Ri_I and
~Ri_Q to the FC.

The channel fading and noises among the SUs and FC
directly affect the bit error rate. Then, the messages received
by the FC may not be consistent with what SUs sent. However,
in most cases, errors do not occur and current encoding
schemes generally have error detection and correction capabil-
ities. If errors are detected in the decoding results and can be
corrected, the FC can still use the information transmitted by
SUs for spectrum sensing without affecting the detection prob-
ability of the proposed algorithm. However, it easily incurs
additional overhead for error correction. If errors are detected
in the decoding results and cannot be corrected, by the delay
constraints of spectrum sensing, the FC directly discards the
erroneous data and it only processes the transmission data in
the remaining SUs. Therefore, it can be assumed that all the
data transmitted by the L SUs can reach the FC accurately
without any error.

Then Cholesky decomposition is performed for matri-
ces from the SUs to construct residual covariance matrices.

Although the absence or presence of PU signals can be deter-
mined by (34), (35), and (36), noises have a decisive effect on
the detection accuracy at low SNRs. To further improve the
detection accuracy at low SNRs, residual covariance matri-
ces by (34) and (35) are proposed. Given that ~Ri_I and
~Ri_Q are non-negative symmetric matrices, a unique Cholesky
decomposition of the matrix can be expressed as

~Ri_I = B i_I
(
Λi_I _SSR

+ Λi_I _VSR

)
BH

i_I

= U i_I ·UT
i_I

~Ri_Q = B i_Q
(
Λi_Q_SSR

+ Λi_Q_VSR

)
BH

i_Q

= U i_Q ·UT
i_Q , (38)

where there are Λi_SSR
= diag(λ1, . . . , λp , 0, . . . , 0)M×M

and Λi_V SR
= diag(γ · ξ2i_n , γ · ξ2i_n , . . . , γ · ξ2i_n ). γ is

the inner product of cos(wn/fs) or sin(wn/fs ). Then, U i

is represented as

U i =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
λ1 + γξ2i_n 0 · · · 0

u2,1

√
λ2 + γξ2i_n · · · 0

...
...

. . .
...

uM ,1 uM ,2 · · ·
√
γξ2i_n

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(39)
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The matrices U i under the above two hypotheses are also
different. The matrix U i obtained by Cholesky decomposi-
tion under the hypothesis H0 and N → ∞ is a diagonal
matrix with the same diagonal elements. The diagonal ele-
ments are equal to the square root of the noise variance.
However, U i obtained by Cholesky decomposition under the
hypothesis H1 and N → ∞ is a lower triangular matrix with
different diagonal elements. The diagonal elements are the
square roots of the eigenvalues of the covariance matrix, i .e.,
the diagonal elements of U i are

√
λs + λv , where λs and λv

are the eigenvalues of the covariance matrices of PU signals
and noises, respectively. Since the covariance matrices of PU
signals is a non-full-rank matrix, while that of noises is a full-
rank one, i .e., the minimum value in the diagonal elements
of U i is

√
λv . Therefore, the square of the minimum value

in the diagonal elements of U i can be used as an estimate
of the noise variance under hypotheses H0 and H1. Thus, I/Q
residual covariance matrices are calculated as

R̂i_I = ~Ri_I − γ1 · ξ2i_nIM×M , (40)

R̂i_Q = ~Ri_Q − γ2 · ξ2i_nIM×M , (41)

where there are γ1 = 1
N

∑N−1
n=0 cos2(ωn/fs) and γ2 =

1
N

∑N−1
n=0 sin2(ωn/fs ).

√
γ1 · ξ2i_n and

√
γ2 · ξ2i_n are mini-

mum values in diagonal elements of matrices U i_I and U i_Q

of ~Ri_I and ~Ri_Q , respectively. The main purpose of residuals
on the covariance matrix is to minimize the influence of noises
on the characteristics of the covariance matrix of PU signals at
low SNRs. Taking a SU with 40 antennas as an example, R̂i_I
and R̂i_Q of dimension 40 × 40 under hypotheses H0 and
H1 are shown in Fig. 6. Physically, residual covariance matri-
ces represent the average power distribution of the PU signals
received by the SU antennas. For example, the elements in
coordinate of (i, j) in subplots 6(a) and subplots 6(c) represent
the average power of I phase signals received by i-th and j-th
antennas. Given the hypothesis H0, as there are no PU signals,
the value for each element in residual covariance matrices is
0. The value of each element in residual covariance matrices
is the mean power of PU signals in received signals under the
hypothesis H1. The darker color of grids in Fig. 6, the smaller
values they represent. The darker diagonals of the four matri-
ces are caused by matrix cancellation. R̂i_I and R̂i_Q under
hypotheses H0 and H1 can be easily distinguished.

Then, γ1 · ξ2i_n and γ2 · ξ2i_n are also used for the credibility
of the i-th SU, which is expressed as

ϕi_I =
si_I _power

γ1 · ξ2i_n

si_I _power =
1

M (M − 1)

M∑
m

M∑
n

R̂i_I (m,n), (m �= n),

(42)

ϕi_Q =
si_Q_power

γ2 · ξ2i_n

si_Q_power =
1

M (M − 1)

M∑
m

M∑
n

R̂i_Q (m,n), (m �= n).

(43)

The physical nature of the covariance matrix is the energy
distribution relationship of received signals. The credibility ϕi
derived from si_power and γ · ξ2i_n has similar transformation
trend as the SNR, thus it indirectly reflects the SNR in the envi-
ronment, where the i-th SU is located. The credibility weights
are then calculated as

wi_I =
ϕi_I∑L

k=1 ϕk_I

, (44)

wi_Q =
ϕi_Q∑L

k=1 ϕk_Q

. (45)

According to (44) and (45), the SUs with better communi-
cation environment are given larger weights.

Finally, the residual covariance matrices of the SUs are
fused with different weights in the fusion center as

Rfusion_I =
L∑

i=1

wi_I R̂i_I

=
1

N

L∑
i=1

N∑
k=1

wi_I yi_SR_I (k)y
H
i_SR_I (k), (46)

Rfusion_Q =

L∑
i=1

wi_QR̂i_Q

=
1

N

L∑
i=1

N∑
k=1

wi_Qyi_SR_Q (k)yHi_SR_Q (k), (47)

where Rfusion_I and Rfusion_Q are fusion matrices of R̂i_I

and R̂i_Q . The credibility weighted matrix fusion can not
only improve the average SNR of the SUs, but also reduce
the errors caused by progressive statistic theory. For example,
suppose that there are three SUs in CRNs and the credibility
in covariance matrices of the SUs is 1, 1 and 0.5, respectively.
Here, the credibility is the ratios of the PU energy to noises.
In the fusion matrix, the credibility is obtained as 9/12 by
directly averaging the covariance matrices of the SUs, while
that is obtained as 10/12 by credibility weighting. Larger cred-
ibility in the fusion matrix leads to easier detection of PU
signals in received signals under the hypothesis H1. If the
credibility of the above three SUs is 1, 1 and 1, respectively,
the credibility weighted matrix fusion is equivalent to directly
averaging covariance matrices. It is also better than indepen-
dent decision-making by a single SU. Eqs. (46) and (47)
are simplified to (

∑L
i=1

∑N
k=1 yi_SR(k)y

H
i_SR(k))/LN . The

credibility weighted matrix fusion is equivalent to the changes
of the length of received signals from N to LN. But it does
not increase the sensing slot. When L → ∞, it is regarded as
Ri_I = ~Ri_I and Ri_Q = ~Ri_Q in (37).

B. Stochastic Resonance and Parameter Optimization

In [21], the SNR of the SR output, i .e., SNRout , is an
identification to judge whether the resonance phenomenon
occurs and optimizes parameters a and b in terms of stochas-
tic resonance theory. According to the adiabatic approximation
theory [32], the SNR of output signals of a bistable SR system
is calculated as
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Fig. 7. Different effects of parameter a and b on the SR system output.

SNRout =
√
2ΔU

(
A

D

)2

exp

(
−ΔU

D

)
, (48)

where A is the amplitude of the PU signals. When the
noise intensity D increases, SNRout does not decrease mono-
tonically, but it first increases and then decreases. Given
D = ΔU /2, SNRout reaches its maximum value as
SNRout = 4

√
2A2 exp(−2)/ΔU . In the PNBSR, there is

ΔU = a4/12b3, while there is ΔU = a2/4b in the TBSR.
Given a = b, the SNR of output signals of the PNBSR is larger
than that of the TBSR. Therefore, the parameters a and b in the
stochastic resonance can be indirectly solved with (8) and (14)
by the maximization of SNR, i.e.,, the following optimization
objective function, as

max SNRout =
limN→∞ 1

N

∑N−1
n=0 ‖sSR(n)‖2

limN→∞ 1
N

∑N−1
n=0 ‖vSR(n)‖2

=
σ2s(SR)

σ2
v(SR)

.

(49)

When SNRout reaches its maximum, PU signals and noises
are considered to produce the SR [27]. However, the cal-
culation of SNRout requires prior information or complex
estimation algorithms [33]. Therefore, by the characteristics
of the covariance matrix ~RYSR

, a new optimization objective
function ψ is employed to replace SNRout in (49) to obtain

the optimal a and b with (8) and (14). And it is presented as

maxψ =

1
M 2−M

∑M
l=1

∑
l �=p

~RY SR
(l , p)

1
M

∑M
l=1

~RY SR
(l , l)

, (50)

where ~RY SR
(l , p) is an element with coordinate (l, p) of

~RY SR
. According to (26), RY SR

is divided into RSSR

and RV SR
. Each element in RSSR

is the inner prod-
uct of the same PU signal. RV SR

is ξ2nIM×M . Thus,
1

M 2−M

∑M
l=1

∑
l �=p

~RY SR
(l , p) is approximately equal to

1
N < sSR(n) · sSR(n) > and 1

M

∑M
l=1

~RY SR
(l , l) is approx-

imately equal to 1
N < sSR(n) · sSR(n) > +ξ2n . When

parameters a and b are adjusted to maximize SNRout , ψ
reaches a maximum at the same time. Eq. (50) is easier to
be calculated, when compared with (49) and requires no prior
information. Then the artificial fish swarm algorithm [34], with
specified parameters shown in Table I, is used to find the
optimal parameters a and b in (50) as an objective function.

In Fig. 7, subplot 7(a) is a received signal and subplot 7(b)
is an output of the PNBSR under the optimal a and b. After
changing a, the output is shown in subplot 7(c) and the PU
signal is distorted. However, if only b is changed in sub-
plot 7(d), the output remains the same except in amplitude
compared with subplot (b). The experimental result shows
that the SR phenomenon mainly depends on the parameter
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TABLE I
ARTIFICIAL FISH SWARM PARAMETERS

a, while the parameter b only changes the amplitude of the
output. Owing to normalization, the influence of amplitude on
algorithm performance can be ignored. Thus, the TBSR and
PNBSR in SR systems are applicable to PU signals with no
frequency changes within one detection cycle. Therefore, to
simplify the optimization, we make b equal to a.

C. Classification of PUs and Noises by the CNN

The CNN obtains strong learning ability about matrix type
feature statistics, and it is used to solve the optimal decision
boundary of residual covariance matrices under hypotheses H0

and H1. The structure of the CNN determines the ability of
the CNN to extract features and it needs to match the data
sets. For simple data, overfitting occurs if the CNN with a
complex structure is adopted. Otherwise, underfitting occurs.

First, several samples (x1, y1), . . . , (xG , yG ), xi ∈
R2×M×M are set as training data, and yi ∈ {+1,−1} is the
label of x i . The dimension of the CNN input is 2 × M × M,
and G is the sample number. Thus, the output of the L-th
convolution layer of the CNN is expressed as

X (L) = f
(
w (L) ⊗X (L−1) + b(L)

)
, (51)

f (x ) = relu(x ) =

{
x x ≥ 0
0 x < 0

, (52)

where w (L) is the convolution kernel of the L-th convolu-
tion layer. To learn training samples, the loss function in the
proposed scheme is represented as

gw ,b(x i ) = ŷi , (53)

Loss = −
G∑
i=1

yi log(ŷi ) + (1− yi ) log(1− ŷi ), (54)

where gW ,b(·) is the mapping relationship between training
samples and labels. ŷi is the label predicted by the CNN.

Then, according to actual simulation results, the specific
framework of the CNN used in this study is given in Table II.
The CNN includes four convolution layers, three maxpool lay-
ers and one denser layer. The probabilities of “+1” and “−1”
are given by the denser layer. Finally, whether there is a PU
signal is determined according to the set threshold and the
probabilities of “+1” and “−1”.

D. Flow Chart of the Proposed Spectrum Sensing

The proposed scheme pre-processes received signals
with the PNBSR to improve the SNRs. The Cholesky

TABLE II
CNN PARAMETERS

Fig. 8. Flow chart of the proposed cooperative spectrum sensing with the
PNBSR-CNN-based residual covariance matrices.

decomposition-based matrix cancellation is used to construct
I/Q residual covariance matrices. Then, the credibility
weighted matrix fusion is performed to fuse residual covari-
ance matrices of the SUs for cooperation. Finally, a CNN is
trained and tested, and then the trained CNN is used for spec-
trum sensing. In summary, the entire process of the proposed
scheme is shown in Fig. 8 and illustrated as follows.

Step 1). The PNBSR system with optimal parameters is used
to preprocess received signal matrices, which transfers parts of
energy in noises to PU signals for higher quality signals and
greatly reduces the interference of noises in the detection to
improve the detection accuracy at low SNRs. Then, orthogonal
demodulation is performed on the output signals to obtain the
strengthened I/Q matrices.

Step 2). Next, I and Q phase covariance matrices are con-
structed in the SU and sent to the FC. To further improve
the detection accuracy at low SNRs, matrix cancellation by
using Cholesky decomposition is proposed to construct resid-
ual covariance matrices R̂i_I and R̂i_Q . At low SNRs, the
noise variance predominates in covariance matrices. Thus,
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matrix cancellation can reduce the influence of noises on
covariance matrices to improve detection accuracy.

Step 3). Then, the credibility weighted matrix fusion is car-
ried out for Rfusion_I and Rfusion_Q to improve the average
SNR of the SUs and it reduces the calculation error of sample
covariance matrices.

Step 4). According to steps 1) to 3), training and test
samples composed of residual covariance matrices and the cor-
responding labels are generated. Then, the CNN is trained by
the training samples to generate the spectrum classifier.

Step 5). The residual covariance matrices of test samples are
input into the spectrum sensing classifier generated in Step 4).
If the output is“+1,” the PU signal is present. Otherwise, it is
absent.

In short, the proposed cooperative spectrum sensing is
implemented as follows. First, a PNBSR system is adopted to
improve the SNR of received signals. Second, I/Q covariance
matrices of strengthened signals are calculated in each SU. The
noise variance of each SU is estimated by the Cholesky decom-
position to construct I/Q residual covariance matrices for better
performance. Third, residual covariance matrices from the dif-
ferent SUs are integrated with credibility weighted matrix
fusion in the FC. Hypotheses H1 and H0 are labeled with
“+1” and “−1,” respectively. Then a CNN classifier is gen-
erated by training labels and corresponding statistics. Finally,
the test samples are input into the classifier. If the output is
“+1,” the spectrum of the PU is occupied. Otherwise, it is not
occupied and free for use.

E. Computational Complexity Analyses

The computational complexity of the proposed spectrum
sensing scheme is analyzed in two aspects.

First, the complexity of the proposed scheme used for
single-user independent detection mainly lies in following
three aspects. The first is to process the received signal matri-
ces with the PNBSR, where 17(N − 1)M multiplications and
15(N − 1)M additions are required. Here, M and N are the
number of antennas in a SU and that of sampling points in
one observation is obtained in a sensing slot. During the set-
ting of system parameters, the complexity of the proposed
model ψ in Section III is estimated as o(M 2). Compared with
the traditional model’s SNRout , the complexity of which is
o(M 3), the proposed model considerably improves the speed
of optimizing parameter a. The second aspect is the com-
putation of the residual covariance matrices. Although the
MME, GEMD [35], SVM [18], CNN [19] and the proposed
scheme are all required to compute the covariance matrix,
the complexity of which is M(M + 1)N/2 multiplications and
M(M + 1)(N − 1)/2 additions. The proposed scheme divides
signals into orthogonal I/Q signals, so that the computational
complexity of the covariance matrix is twice as much as oth-
ers and M(M + 1)N multiplications and M(M + 1)(N − 1)
additions are required. Compared with the MME, GEMD and
SVM schemes, the proposed scheme performs the Cholesky
decomposition with double complexity o(2M 3/3) to con-
struct the residual covariance matrices. The third aspect is
the use of the trained CNN model to be classified. And this

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITY IN MULTIPLICATIONS

AMONG THE PROPOSED AND EXISTING SPECTRUM SENSING METHODS

TABLE IV
COMPARISON OF COMPUTATIONAL COMPLEXITY IN ADDITIONS AMONG

THE PROPOSED AND EXISTING SPECTRUM SENSING METHODS

process needs o(
∑

k=1 P
2
kG

2
kUkUk−1) multiplications and

o(
∑

k=1 P
2
k (G

2
k − 1)UkUk−1) additions. Here, Pk , Gk and

Uk represent the length of the output feature graph, the convo-
lution kernel length and the number of output channels of the
k-th convolution layer, respectively. Compared with the SVM,
the complexity of which is o(NNs), the CNN model is more
suitable for high dimensional data and it has stronger clas-
sification ability. Here, Ns represents the number of support
vectors. In conclusion, the computational complexity of the
proposed scheme is compared with other methods in Tabs. III
and IV.

Second, the above content is the complexity analysis of
the proposed scheme in the case of the single-user detec-
tion. Next, the complexity of the proposed cooperative spec-
trum sensing scheme compared with traditional cooperation
is analyzed. The traditional cooperation, decision fusion,
including logical-OR rule, logical-AND rule, and K-rule
are widely used. However, the complexity of the tradi-
tional one is proportional to the number of the SUs by
this method. Suppose that L SUs are presented in a CRN,
if the proposed cooperative spectrum sensing scheme relies
on decision fusion, its complexity is L(N (M + 16)M +
o(
∑

k=1 P
2
kG

2
kUkUk−1) + o(2M 3/3)) multiplications and

L((N+11)(M+1)M+o(
∑

k=1 P
2
k (G

2
k − 1)UkUk−1)) addi-

tions. However, the matrix fusion reduces the complexity by
removing considerable repetition and the complexity of the
total scheme is LN (M +16)M +o(

∑
k=1 P

2
kG

2
kUkUk−1)+

o(2LM 3/3) multiplications and L((N + 11)(M + 1)M +
(L− 1)M 2) + o(

∑
k=1 P

2
k (G

2
k − 1)UkUk−1) additions.

In summary, the proposed algorithm increases in com-
plexity when compared with the existing spectrum sensing
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Fig. 9. The SNR enhancement performance of the SR.

methods. However, the detection probability of the proposed
algorithm is obviously improved at the cost of these acceptable
complexity growth.

IV. SIMULATION AND RESULT ANALYSIS

The performance of the proposed cooperative spectrum
sensing scheme is mainly verified by numerical simulations,
and experimental parameters are listed as follows. QPSK
modulation is adopted to modulate PU signals. The AWGN
is applied with zero mean and variance σ2n . Suppose that
different SNR conditions in a real communication environ-
ment are simulated by changing σ2n . The number of antennas
of the SUs is set as 10. The frequency of PU signals is
set as fc = 1 × 103 Hz, and the sampling frequency is
fs = 1×104 Hz. The sampling interval is T = 0.1s. A total of
2000 training samples and 1000 test samples are generated at
each SNR to train and test the CNN model. In each of the fol-
lowing experiments, if experimental parameters change, they
are explained separately.

A. Analysis of the SR System and Noise Estimation

In Section III, the PNBSR has a lower potential well barrier
and flatter potential well wall to bring a better enhancement
than that of the TBSR in (48). Then, the performance of the
two SR models is compared together in Fig. 9. The TBSR
improves the SNR of the received signals by about 3.14dB.
The enhancement of the PNBSR outperforms that of the TBSR
by 0.22dB.

According to the above results, the eigenvalues of covari-
ance matrices of received signals are compared before and
after the PNBSR treatment in Fig. 10.

In Fig. 10, when received signals are noises, the SR can-
not be generated, and no obvious difference is found between
the eigenvalues of output signals and received signals. When
received signals include both PU signals and noises, the first
five eigenvalues of the received signal matrix contain the
energy of both PU signals and noises, while the last five ones
only contain the energy of noises. Then, PU signals and noises
produce the SR in the PNBSR with the optimal a. Comparing
the eigenvalues of the input and output shows that the PNBSR

Fig. 10. The changing process of the eigenvalues of signals in the PNBSR
system.

Fig. 11. The impact of the number of antennas on the estimated noise
variance.

reduces the eigenvalues of noise and increases those of PU
signals. Therefore, the PNBSR with the optimal a transfers
part of the energy of noises to PU signals.

Since the noise variance estimation is required to reduce
the impact of noises on the detection statistics, the estimation
of the noise variance can improve the detection accuracy of
the proposed spectrum sensing scheme. Then, assuming the
amplitude of the PU signal as 1 and the noise variance as 1,
the impact of the number of antennas on the estimated noise
variance is simulated numerically in Fig. 11. With more anten-
nas, the estimated noise variance is much closer to the actual
one.

Because the robustness of the proposed cooperative spec-
trum sensing mainly depends on the PNBSR, the influence of
the system parameter a on the enhancement effect is simulated
and plotted in Fig. 12.

In Fig. 12, the influence of the parameter a on the enhance-
ment under three SNRs and two PU frequencies is exhibited.
The parameter a is normalized. In Fig. 12, although there is
only one optimal parameter a for each PU signal frequency,
the SNR gain is still larger than 0 during 85% adjustment
intervals near a. Hence, the PNBSR has strong robustness.
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Fig. 12. The corresponding relationship between the enhancement and the
parameter a.

Fig. 13. Comparison of detection probabilities of different spectrum sensing
schemes.

B. Performance Comparison Among the Proposed Spectrum
Sensing Scheme and Other Schemes

Next, in the case of different SNRs and false alarm
probabilities Pf , the detection probabilities Pd of the ED,
MME, GEMD, SVM, CNN and proposed schemes with one
SU are simulated and compared. The performance of the
proposed scheme without the PNBSR and matrix cancellation
is compared.

In Fig. 13, the detection probability of each spectrum-
sensing scheme at different SNRs under false alarm probability
of 0.1. The detection probabilities of the proposed, CNN, and
SVM schemes are also better than those of conventional spec-
trum detection schemes, because the decision thresholds of
the traditional ED and schemes based on eigenvalues are so
progressive that the decision thresholds with large errors can-
not accurately detect PU signals from noises at low SNRs.
However, three intelligent algorithms automatically give more
accurate decision thresholds from the CNN or SVM model
with the actual data. Compared with the SVM scheme, the
detection probabilities of the CNN and proposed schemes are
improved by 1 dB and 2dB, respectively, when the detection
probability of the SVM scheme is 1 at SNR of −8 dB. At
−15 dB, the detection accuracy of the proposed algorithms

Fig. 14. Comparison of ROC curves of different spectrum sensing schemes
at −13 dB.

is 77% and 75% higher than those of the SVM and CNN
schemes, respectively. This phenomenon can be explained as
follows. First, the SVM detection method is based on eigenval-
ues. Although it solves the problem of the imprecise threshold,
the SVM scheme only uses the eigenvalues of the covariance
matrix and it does not make full use of all the information
carried by the covariance matrix. Also the CNN has more
advantages than the SVM in dealing with high-dimensional
data. Second, compared with the CNN scheme, the proposed
scheme introduces a PNBSR system in (21) to improve the
SNR of received signals. In addition, the matrix cancellation
operation of (40) and (41) is proposed to construct residual
covariance matrices, thereby weakening the interference of
noises in the detection and making PU signals dominant in
covariance matrices. Then residual covariance matrices are
used to train the CNN to make the weights in (51) more
sensitive to PU signals, thereby improving the detection accu-
racy at low SNRs. Therefore, the proposed scheme is superior
to traditional schemes and other intelligent schemes in terms
of detection probability. Since Fig. 9 shows that the PNBSR
improves the SNR of the received signals by about 3.36dB, it is
also verified in Fig. 13 that the PNBSR significantly improves
the detection performance of the proposed algorithm. Due to
the sensitivity of the CNN to numerical values, the matrix
cancellation to eliminate the noise interference is necessary to
improve the detection performance too.

The receiver operating characteristic (ROC) curve is another
effective tool to evaluate the spectrum sensing performance.
Fig. 14 shows the ROC curves of various schemes at an SNR
of −13 dB.

In Fig. 14, a positive correlation trend occurs between detec-
tion probability and false alarm probability. Three intelligent
methods perform better than those of the ED, MME and
GEMD in terms of the ROC at −13 dB. In particular, the
detection probability of the proposed algorithm reaches 0.98,
when the false alarm probability is 0.1. Compared with the
other two intelligent algorithms, the proposed scheme reduces
the false alarm probability by at least 60%, when the detec-
tion probability is 0.9. In summary, three intelligent algorithms
achieve higher performance in comparison with the traditional
algorithms owing to the more accurate decision threshold
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Fig. 15. Influence of the number of sampling points on the detection
probability of the proposed algorithm.

Fig. 16. Influence of the different channel conditions on the detection
probability of the proposed algorithm.

generated by the SVM and CNN models, whereas the CNN
classifier achieves a higher detection probability by making
full use of the covariance matrix. A PNBSR system and matrix
cancellation are adopted in the proposed scheme to further
improve the detection probability in (21), (40) and (41). Thus,
the proposed scheme obtains a better detection performance
compared with those of the other two intelligent schemes.

In Fig. 15, the detection probability of the proposed scheme
by a single SU increases with the increase of sampling points
N in the range from 200 to 1000. The performance improve-
ment caused by increasing the same number of sampling
points decreases gradually. The reason for this phenomenon
is explained as follows. When the number of sampling points
increases gradually and N → ∞, the sample covariance matri-
ces gradually approximates the statistical covariance matrices
in terms of (37), thereby reducing the calculation error and
making the actual performance of the proposed algorithm
closer to the best theoretical performance. However, while
improving the detection performance, the increase in sampling
points leads to more complex calculations and higher latency.

Fig. 16 simulates the impact of different channel conditions
on the detection probability of the proposed algorithm. The
channels are selected as the Gaussian and Rayleigh channels.
The maximum frequency offset in the Rayleigh channel is

Fig. 17. Influence of the number of antennas on the detection probability
for the proposed scheme.

10 Hz and the maximum delay is one period for the PU
signals.

In Fig. 16, the detection probability of the proposed algo-
rithm in Gaussian channels is higher than that in Rayleigh
channels. This is due to the presence of fading coefficients
in Rayleigh channels, which reduces the autocorrelation and
cross-correlation of PU signals, causing the detection statis-
tics in (40) and (41) under the hypothesis H1 more sim-
ilar to those of random variables. Moreover, the Doppler
frequency shift and delay in the Rayleigh channels reduce the
detection probability in the proposed algorithm. Because the
Doppler frequency shift and delay reduce the cross-correlation
among signals received by different antennas. When a Doppler
frequency shift occurs, according to trigonometric functions,
the covariance among signals received by different antennas
approaches zero. When the delay of the PU signals received
by two antennas is exactly π/2, the PU signals are orthogonal
and the above covariance is zero too.

The number of antennas in contemporary wireless devices
is increasing gradually. Then, the influence of the number
of antennas from 10 to 40 on the detection probability is
simulated in Fig. 17. As the number of antennas in a SU
increases, the detection probability is increasing. Furthermore,
the detection probability increases by 18% by the scheme of 40
antennas, compared with that of the same scheme of 10 ones at
−20 dB. The number of antennas determines the dimension of
the detection statistics, and a larger dimension exhibits that the
CNN learns much more from the detection statistics to obtain a
more accurate classifier. Moreover, as the number of antennas
increases, the accuracy of noise variance estimation improves
too. By the construction of the residual covariance matrices,
the interference caused by the noises in the detection statistics
can be removed to the greatest extent, thereby improving the
detection probability of the proposed algorithm. However, at
the same time, it requires that the CNN has a strong learning
ability to be equipped with more complex model structures.
Hence, the performance improvement brought by the larger
dimension statistics is obtained at the cost of a large amount
of computation.

Then, the proposed scheme and the K-rule one are com-
pared when the number of the SUs cooperating with each
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Fig. 18. Comparison of detection probabilities of different cooperative
spectrum detection schemes.

other is 3, 5, and 7. In Fig. 18, with the same number
of the SUs, the credibility weighted matrix fusion has bet-
ter detection performance compared with the K-rule at low
SNRs. In particular, the credibility weighted matrix fusion
improves the detection probability by 7% at −20 dB under
7 SUs. Although the detection performance of two coopera-
tive schemes improves with the increase of the number of the
SUs, the performance improvement of the K-rule is not obvi-
ous, when the number of the SUs increases from 5 to 7. The
reason for this result is listed as follows. The K-rule scheme
adopts the voting idea of the minority obeying the majority
to reduce the probability of the detection error caused by the
sudden deterioration. Then, the detection performance is indi-
rectly improved by reducing the probability of the detection
error. However, when the number of the SUs is 5, the detec-
tion error is reduced to be sufficiently small. It is actually the
algorithm itself that ultimately limits the performance. For the
proposed matrix fusion in (46) and (47), it applies different
weights to different SUs according to the credibility of them
to improve the average SNR. When the credibility of the SUs
is the same, the credibility weighted matrix fusion is equiva-
lent to the increase of the number of sampling points. So, the
sample covariance matrix is closer to the statistical covariance
matrix. When the channel fading and noise among SUs and
FC cause a decrease in the number of the SUs participating
in cooperation, it ultimately reduces the detection accuracy of
the proposed cooperative spectrum sensing scheme.

V. CONCLUSION

A novel piecewise normalized bistable stochastic resonance
strengthened cooperative spectrum sensing with the CNN
and residual covariance matrices is proposed to improve the
detection accuracy for SUs at low SNRs in wireless commu-
nications. The advantages are presented as follows. First, a
PNBSR system is proposed to improve the SNR of received
signals and it performs better than those of the TBSR system.
In the PNBSR, a new optimization index is proposed to
optimize system parameters more easily. Second, Cholesky
decomposition-based matrix cancellation and the credibility
weighted matrix fusion are proposed to reduce calculation
errors and noise interference for higher detection accuracy.

Third, a CNN model is used to immediately determine the
existence of the PUs. The decision threshold of the proposed
algorithm is completely learned by the CNN. Finally, at low
SNRs, the spectrum sensing performance of the proposed
scheme is better than those of other detection schemes in
terms of detection probabilities. Simulation results indicate
that the proposed scheme achieves significant improvement in
terms of the detection accuracy at low SNRs and it has strong
robustness to cope with the channel fading, which verify its
suitability in 5G communications.

REFERENCES

[1] N. Tadayon and S. Aissa, “A multichannel spectrum sensing fusion
mechanism for cognitive radio networks: Design and application to IEEE
802.22 WRANs,” IEEE Trans. Cogn. Commun. Netw., vol. 1, no. 4,
pp. 359–371, Dec. 2015.

[2] A. Zaeemzadeh, M. Joneidi, N. Rahnavard, and G.-J. Qi, “Co-SpOT:
Cooperative spectrum opportunity detection using Bayesian clustering in
spectrum-heterogeneous cognitive radio networks,” IEEE Trans. Cogn.
Commun. Netw., vol. 4, no. 2, pp. 206–219, Jun. 2018.

[3] M. McHenry and S. Karl, NSF Spectrum Occupancy Measurements,
Shared Spectr. Company, Vienna, VA, USA, Oct. 2005.

[4] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software
radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18,
Aug. 1999.

[5] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy detection
of unknown signals over fading channels,” in Proc. IEEE Int. Conf.
Commun. (ICC), vol. 5. Anchorage, AK, USA, Jan. 2003, pp. 21–24.

[6] Y. Long, Q. Wu, and J. Wang, “Optimal adaptive multi-band spectrum
sensing in cognitive radio networks,” KSII Trans. Internet Inf. Syst.,
vol. 8, no. 3, pp. 984–996, Mar. 2014.

[7] W. Gardner, “Spectral correlation of modulated signals: Part I—Analog
modulation,” IEEE Trans. Commun., vol. 35, no. 6, pp. 584–594,
Jun. 1987.

[8] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J. Sel.
Topics Signal Process., vol. 2, no. 1, pp. 4–17, Feb. 2008.

[9] A. Surampudi and K. Kalimuthu, “An adaptive decision threshold
scheme for the matched filter method of spectrum sensing in cogni-
tive radio using artificial neural networks,” in Proc. 1st India Int. Conf.
Inf. Process. (IICIP), New Delhi, India, Aug. 2016, pp. 1–5.

[10] M. Yang, Y. Li, X. Liu, and W. Tang, “Cyclostationary feature detection
based spectrum sensing algorithm under complicated electromagnetic
environment in cognitive radio networks,” China Commun., vol. 12,
no. 9, pp. 35–44, Sep. 2015.

[11] Y. Zhang, S. Zhang, Y. Wang, J. Zhuang, and P. Wan, “Riemannian mean
shift-based data fusion scheme for multi-antenna cooperative spectrum
sensing,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 1, pp. 47–56,
Mar. 2022.

[12] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on spec-
trum sensing for cognitive radio: Challenges and solutions,” EURASIP
J. Adv. Signal Process., vol. 2010, Jan. 2010, Art. no. 381465. [Online].
Available: https://doi.org/10.1155/2010/381465

[13] A. Eslami and G. K. Kurt, “Proposal and analysis of consecutive results
maximum to minimum eigenvalue spectrum sensing algorithm,” in Proc.
40th Int. Conf. Telecommun. Signal Process. (TSP), Barcelona, Spain,
Oct. 2017, pp. 165–169.

[14] Z.-L. Wang, X.-O. Song, and X.-R. Wang, “Spectrum sensing detection
algorithm based on eigenvalue variance,” in Proc. IEEE 8th Joint Int.
Inf. Technol. Artif. Intell. Conf. (ITAIC), Chongqing, China, May 2019,
pp. 1656–1659.

[15] Y. Zeng and Y. Liang, “Spectrum-sensing algorithms for cognitive radio
based on statistical covariances,” IEEE Trans. Veh. Technol., vol. 58,
no. 4, pp. 1804–1815, May 2009.

[16] C. Gattoua, O. Chakkor, and F. Aytouna, “An overview of coopera-
tive spectrum sensing based on machine learning techniques,” in Proc.
IEEE 2nd Int. Conf. Electron. Control Optim. Comput. Sci. (ICECOCS),
Kenitra, Morocco, Dec. 2020, pp. 1–8.

[17] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain, “Machine
learning techniques for cooperative spectrum sensing in cognitive radio
networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2209–2221,
Nov. 2013.

Authorized licensed use limited to: HANGZHOU DIANZI UNIVERSITY. Downloaded on October 18,2023 at 00:43:50 UTC from IEEE Xplore.  Restrictions apply. 



1182 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 9, NO. 5, OCTOBER 2023

[18] J. Bao, B. Lu, B. Jiang, J. Wu, and C. Liu, “Cooperative blind spectrum
detection with doolittle decomposition and PCA-SVM classification in
hybrid GEO-LEO satellite constellation networks,” IEEE Trans. Aerosp.
Electron. Syst., vol. 57, no. 5, pp. 3209–3220, Oct. 2021.

[19] C. Liu, J. Wang, X. Liu, and Y.-C. Liang, “Deep CM-CNN for spectrum
sensing in cognitive radio,” IEEE J. Sel. Areas Commun., vol. 37, no. 10,
pp. 2306–2321, Oct. 2019.

[20] W. Lee, M. Kim, and D. Cho, “Deep cooperative sensing: Cooperative
spectrum sensing based on convolutional neural networks,” IEEE Trans.
Veh. Technol., vol. 68, no. 3, pp. 3005–3009, Mar. 2019.

[21] D. He, Y. Lin, C. He, and L. Jiang, “A novel spectrum-sensing technique
in cognitive radio based on stochastic resonance,” IEEE Trans. Veh.
Technol., vol. 59, no. 4, pp. 1680–1688, May 2010.

[22] K. Zheng, H. Li, S. Djouadi, and J. Wang, “Spectrum sensing in low
SNR regime via stochastic resonance,” in Proc. Conf. Inf. Sci. Syst.
(CISS), Princeton, NJ, USA, Mar. 2010, pp. 1–5.

[23] R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochas-
tic resonance,” J. Phys. A Math. Gen., vol. 14, no. 11, pp. 453–457,
Nov. 1981.

[24] G.-F. Wang, H.-R. Zhang, F.-Q. Zhang, J.-C. Ye, and L. Wei, “Scale
transformation stochastic resonance for a weak signal detection,” in
Proc. 11th World Congr. Mech. Mach. Sci., Apr. 2004, pp. 1–9.

[25] Z. Qiao, Y. Lei, J. Lin, and F. Jia, “An adaptive unsaturated bistable
stochastic resonance method and its application in mechanical fault
diagnosis,” Mech. Syst. Signal Process., vol. 84, pp. 731–746, Feb. 2017.

[26] H. B. Zhang, Q. He, S. Lu, and F. Kong, “Stochastic resonance with a
joint Woods–Saxon and Gaussian potential for bearing fault diagnosis,”
Math. Probl. Eng., vol. 2014, Jun. 2014, Art. no. 315901. [Online].
Available: https://doi.org/10.1155/2014/315901

[27] S. Jiao, S. Lei, W. Jiang, Q. Zhang, and W. Huang, “A novel type of
stochastic resonance potential well model and its application,” IEEE
Access, vol. 7, pp. 160191–160202, 2019.

[28] U. R. Umar and A. U. H. Sheikh, “A comparative study of spectrum
awareness techniques for cognitive radio oriented wireless network,”
Phys. Commun., vol. 9, pp. 148–170, Dec. 2013.

[29] W. Zhang, R. Mallik, and K. Letaief, “Optimization of cooperative spec-
trum sensing with energy detection in cognitive radio networks,” IEEE
Trans. Wireless Commun., vol. 8, no. 12, pp. 5761–5766, Dec. 2009.

[30] D. Romero and R. López-Valcarce, “Spectrum sensing for wireless
microphone signals using multiple antennas,” IEEE Trans. Veh. Technol.,
vol. 63, no. 9, pp. 4395–4407, Nov. 2014.

[31] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic
resonance,” Rev. Mod. Phys., vol. 70, no. 1, pp. 223–287, Jan. 2008.

[32] B. McNamara and K. Wiesenfield, “Theory of stochastic resonance,”
Phys. Rev. A, vol. 39, no. 9, pp. 4854–4869, Jan. 1989.

[33] D. R. Pauluzzi and N. C. Beaulieu, “A comparison of SNR estimation
techniques for the AWGN channel,” IEEE Trans. Commun., vol. 48,
no. 10, pp. 1681–1691, Oct. 2000.

[34] P. Leng et al., “Logistic regression based on artificial fish swarm algo-
rithm with T-Distribution parameters,” in Proc. IEEE 9th Joint Int.
Inf. Technol. Artif. Intell. Conf. (ITAIC), vol. 9. Chongqing, China,
Dec. 2020, pp. 1912–1915.

[35] M. Z. Shakir, A. Rao, and M. Alouini, “Collaborative spectrum sens-
ing based on the ratio between largest eigenvalue and geometric mean
of eigenvalues,” in Proc. IEEE GLOBECOM Workshops (GCWkshps),
Dec. 2011, pp. 913–917.

Bin Jiang received the B.S. and M.S. degrees
in communication and electronic system from the
School of Communication Engineering, Hangzhou
Dianzi University, Hangzhou, China, in 1999 and
2004, respectively, where he is currently pursuing
the Ph.D. degree in electronic science and technol-
ogy with the School of Electronics and Information.

He is currently a Senior Experimentalist with the
School of Communication Engineering, Hangzhou
Dianzi University. His main research interests
include wireless communications, signal processing,

and information theory and coding.

Yuefei Cao received the B.S. degree in com-
munication engineering from the School of
Communication Engineering, Hangzhou Dianzi
University, Hangzhou, China, in 2020, where
he is currently pursuing the master’s degree in
information and communication engineering with
the School of Communication Engineering.

His research interests include wireless
communications and cognitive radio.

Jianrong Bao (Senior Member, IEEE) received the
B.S. degree in polymeric materials and engineer-
ing and the M.S. degree in communication and
information system from the Zhejiang University of
Technology, Hangzhou, China, in 2000 and 2004,
respectively, and the Ph.D. degree in information and
communication engineering from the Department
of Electronic Engineering, Tsinghua University,
Beijing, China, in 2009.

He is currently a Professor with the School
of Communication Engineering, Hangzhou Dianzi

University, Hangzhou, China. His main research interests include wireless
communications, cognitive radio, and information theory and coding.

Chao Liu received the B.S. and Ph.D. degrees
in information and communication engineering
from the School of Electronic Information and
Communications, Huazhong University of Science
and Technology, Wuhan, China, in 2000 and 2005,
respectively.

He is currently an Associate Professor with the
School of Communication Engineering, Hangzhou
Dianzi University, Hangzhou, China. His research
interests include modern wireless communication
and coding, and MIMO multi-user detection.

Xianghong Tang received the B.S. degree in
physics from Southwest Normal University,
Chongqing, China, in 1985, the M.S. degree in
physics from Sichuan University, Chengdu, China,
in 1988, and the Ph.D. degree in EE from the
University of Electronic Science and Technology,
Chengdu, in 1997.

He is a Professor with the School of
Communication Engineering, Hangzhou Dianzi
University, Hangzhou, China. His research interests
include multimedia signal processing, information

theory, and source/channel coding.

Authorized licensed use limited to: HANGZHOU DIANZI UNIVERSITY. Downloaded on October 18,2023 at 00:43:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


