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Abstract— In this paper, we investigate the resilient consensus
problem for multi-agent systems with quantized communica-
tion. We assume that each agent in the network can only
exchange quantized information with its neighbors. A novel
quantized-data based secure control law with built-in security
mechanism is proposed to achieve consensus in the presence
of attack agents. It is shown that for a directed network, as
long as the number of attack nodes is bounded in each node’
neighborhood, the consensus can be achieved with a given
sufficient network connectivity. Finally, we offer a numerical
example to demonstrate the validity of the derived results.

I. INTRODUCTION

Distributed consensus over multi-agent networks has be-
come a hot research topic in the systems and control com-
munity during the last few years (see [1], [2], [3], [4], [5],
[6], [7] and the references therein). The problem is widely
encountered in the engineered applications such as robots,
traffic congestion control, unmanned air vehicles, formation
flight, and microgrids.

As a special case of distributed consensus, resilient con-
sensus algorithms have been studied extensively over the
years [8], [9], [10]. A pioneering work on the resilience of
consensus networks to misbehaving nodes appears in [11],
where the authors consider the case that all the well-behaving
nodes in the network reach a common state required by
a special leader node, when the communication topology
is non-complete. The authors of [12] address the resilience
of consensus problem for linear multi-agent networks, and
propose three effective algorithms to detect and identify
misbehaving nodes. To achieve accurate consensus state,
[13] proposes a novel reputation-based secure controller
with distributed security mechanisms. In [14] and [15], the
authors introduce a novel graph-theoretic property known as
r-robustness, based on which a consensus control strategy
that is resistant to malicious nodes is provided. Later, the
authors of [16] extend the above results to the case of
second-order systems. Moreover, some other strategies for
resilience of consensus algorithms are considered in [17],
[18], [19]. The comprehensive survey for recent works on
secure consensus can be found in [20] and [21].
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In resilient consensus literature, we observe that much
work are developed under the assumption that all agents in
the network can get exact information from their neighbors.
However, for practical distributed multi-agent systems, each
agent’s computational load and energy storage are limited,
and the links between two nodes can be subjected to commu-
nication bandwidth constraints. Therefore, consensus prob-
lems based on quantized communication become interesting
and more meaningful.

In this paper, we would like to develop a resilient con-
sensus algorithm for multi-agent networks with quantized
communication. In particular, the system considered in this
paper contains two types of agents: loyal agents and attack
agents. Each loyal agent will update its value under a
given distributed control law. While, the attack agent will
not obey the law and purposely affect the loyal agents’
updates by transmitting false information to its neighbors.
The algorithm is designed based on the local quantized
information provided to each agent by its neighbours. It will
be proved that when the information-exchange network is
satisfied with the given sufficient conditions, a consensus for
all the loyal agents can be achieved. A numerical simulation
is given to demonstrate the effectiveness of the algorithm.

This paper is organized as follows: Some useful prelim-
inaries in graph theory, logarithmic quantization and Dini
derivatives are reviewed in Section II. In Section III, the
resilient consensus problem with quantized communication
data is formulated and main results are established in Section
IV. Then in section V, we illustrate the results via a numerical
simulation. Finally, some concluding remarks are made in
Section VI.

II. PRELIMINARIES

In this section, some basic notations on algebraic graph
theory and features of Dini derivatives and logarithmic
quantization are reviewed.

A. Graph theory

A weighted directed graph (or digraph) of order n is
defined as G = {V, &g, Ag}, where V is a non-empty set
of vertices (or nodes), &g C V x V is a set of edges, and
Ag = [a; ;] € R™™" is called the weighted adjacency matrix
associated with G. For an edge (i,j) € &g, i is called the
parent node whose messages can flow to node j. It is defined
by a;; = O,Gi,j > 0 if (],’L) S gg and Qi = 0 otherwise.
Denote N; = {j|j € V, (j,i) € Eg} the set of neighbors of
1 and d; the number of neighbors of i. A directed path from
node ¢; to node %, is given by a sequence of ordered edges of
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the form (il, i2), (ig, ig), ey (Z'pfl, ip) with (’L’jfl, ij) S gg,
Vi € {2,3,...,p}. The graph G is said to have a spanning
tree if there is a root node without any parent such that
there exists a direct path from this node to the rest of nodes.
Given a piecewise constant function o (t), G7) = {V, €7}
denotes a time-varying graph.

Then, we introduce some notions of robustness for a
directed graph. The following definition is adopted, with
minor changes, from [14].

Definition 2.1: (r-robust graph) Consider a directed net-
work G = {V,&g}, we say G is an r-robust graph, where
r € Z7, if for all possible pairs of nonempty subsets, Vi, V;
C V, there is at least one node ¢ € V,, k = 1,2 such that
INA\Vs| > 7.

By employing the concept of robust graph, the next
lemmas show some properties of such graphs [14], [22].

Lemma 2.1: [14] Let directed network G = {V,Eg} be an
r-robust graph. Then G’ = {V,E’g}, where Eé is a new set
of edges removed at most s incoming edges for each node,
is (r — s)-robust.

Lemma 2.2: [22] Consider directed network G = {V, £g}.
If G is a 1-robust graph, then G contains a spanning tree.

B. Dini derivatives

Given a continuous function f : (tg,t1) = R (to < t1),
the upper right-hand Dini derivative DT f(-) at ¢ is defined

as
D% f(t) = limsup M

s—0t S

It is well known that f(¢) is non-increasing over (tg,t1)
if and only if DT f(t) < 0, t € (to,t1) (refer to [23] for
a more detailed derivation). The following lemma shows a
basic property of Dini derivative.

Lemma 2.3: [24] Let Vi(t,z) : R x R™ — R be of class
C1, where i € Ty = {1,2,...,n}. Let V(¢,2) = max;ez,
Vi(t, ). Then D*V (t,2(t)) = max;er(r) Vi(t, z(t)), where
Z(t)={i € Iy : Vi(t,x(t)) = V(t,x(t))}.

C. Concepts in logarithmic quantization

In the following, we provide a brief review of the loga-
rithmic quantization. For more details, see [25]. A quantizer
q(-) : R = T is a mapping from R to the set I of quantized
levels, where T is finite or denumerable. The quantizer ¢(-)
is‘ called logarithmic if it has the form I' = {:i:w(i) fw() =
plwy,t = 0,£1,42,..} U{0}, 0 < p < 1, weyy > 0. The
associated quantizer ¢(-) is defined as follows:

if Lw(i) <z < ﬁw(i)

W), +8
q(z) =4 0, ifz=0 (D
—q(—2z), ifx<0
where 8 = % € (0,1) is called sector bound. The
quantization density for quantizer (1) is defined as ﬁ. It

is noted that the smaller the 3, the more the number of
quantization levels in any given subset of R. In this paper,
we assume ¢(-) is enough to use levels to represent all the
signals.

III. PROBLEM STATEMENT

Consider a continuous time multi-agent system with n a-
gents, the network model of the system can be described with
a directed graph G = {V, g }. Each node in V represents an
autonomous agent. Without loss of generality, we assume that
there are two types of agents in our network: loyal agents and
attack agents. We denote V; and V), the set of loyal nodes
and the set of attack nodes, respectively. Clearly, we have
V=VUVs 0 =V V.

Consider each loyal node with the following dynamics:
.’L'Z(t) = ui(t), 1€V 2)

where x; € R is the state value of 7, and u; € R is the control
protocol to be designed. Assume that node ¢ can receive its
neighbors’ quantized state information

vij(t) = q(z;(t), j €N, i€V 3)

where ¢(-) is defined as in (1).

Since the state update depends on neighboring nodes’
information, a set of attack nodes can affect the state updates
of their neighbors by transmitting false states. In this paper,
the goal of the attack agent is to prevent the system from
reaching consensus or mislead system state into an invalid
value (unsafe region). Assume that each attack node knows
the encoding and decoding schemes of the entire network,
and does not follow the protocol (2) to update its state.
Instead, it is assumed to have the capability to update its state
arbitrarily and convey false information to its neighbors.

To make the discussion simple, we assume that there are
up to k such attack nodes in each node’s neighborhood. We
will refer to this model as “f-locally attack model”.

Let us define M (t) and m(t) as the maximum and mini-
mum current state values of all the loyal nodes, respectively,
ie., fort > 0,

M(t) = max x;(t), m(t) = {relgll x;(t). 4)

Then, we introduce the following definition.

Definition 3.1: Under the f-locally attack model, the sys-
tem (2) with quantized communication is said to achieve
resilient consensus if it satisfies the following conditions:

m(0) < gg min zi(t) < igg g,ré&‘m)icxl(t) < M), (3)
Jim (q(ri(1)) - g(a;(1) =0, Vi j €V (©)

In Definition 3.1, condition (5) guarantees that each loyal
node’s state remains in the safety interval o determined by
the maximum and minimum initial values of the loyal nodes
all the time. This condition is equivalent to that for any ¢ > 0
and ¢ € V;, z;(t) € o = [m(0), M(0)]. On the other hand,
condition (6) guarantees all loyal nodes eventually converge
to a common quantized state.

Remark 3.1: It is worth mentioning that here we just
consider the quantized state g(x) as the final consensus state.
There may exist consensus error between the real state and
quantized state, while investigating the influence of such as
quantization density, initial states and the parameters of the
network graph on the consensus error will be our next work.
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IV. ALGORITHM FOR RESILIENT CONSENSUS

Now we present the detailed description of the proposed
algorithm: To update its state at time ¢, each loyal node
1 € V), firstly extracts the current received states (quan-
tized data) of neighbors into a set, denoted as ©;(t) =
{q(z;(t))|j € N;}, then sorts the elements in ©;(¢) from
the largest to the smallest. If there exist no less than f data
strictly larger than ¢(z;(t)), then ¢ discards precisely the
largest f data in the sorted set ©;(¢) by temporarily cutting
off corresponding incoming communication links. Otherwise,
i discards all of these data in ©;(t); Meanwhile, node i
applies the similar manipulation to the smallest data in set
0,(t).

Let F;(t) be the set of elements which discarded by node
¢ at time t. Then we design the following control u;(t) for

node i:
uit) = Y

JEN;/Fi(t)

[i,; () — vis(t)], 0 € V. (N

Substituting the protocol (7) into the system (2) - (3) leads

to
ait)= >

JENi/Fi(t)

lq(x; () — q(@i(t)],i € Vi (8)

It is worthwhile to mention that although the initial net-
work considered there is fixed, the protocol (7) involving
manipulations of communication edges can lead the network
to a stochastically time-varying graph G, ) = (V,Ex (1))

Assumption 4.1: There exists a scalar 7p > 0 as a lower
bound between any two switching time instants ¢, tg11 €
O'(t), i.e., tk+1 — tk Z TD.

From protocol (7) above, we know that each loyal node
may remove up to 2f data from the set ©,(t). However,
when the attack nodes’ state information is not inside the
range of the top and bottom f data of the sorted list, the
above algorithm cannot remove this data effectively. Under
this case, the loyal nodes may possibly adopt these attack
nodes’ values for updating their own states. This special
attack node is summarized in the following definition.

Definition 4.1: A mild attack node is a node ¢, ¢ € V,
whose state information is received and kept by its loyal
neighbor p, p € V; under the protocol (7) at time ¢t. Then,
the state x,(¢) can be expressed as a convex combination of
all the quantized state information of loyal nodes. i.e.,

2o(t) = Y epi(a(z;(t), q€VanNi, (9

JEVI

where 0 < ¢, ;(t) < 1land 3y, ¢p;(t) = 1.

From the above definition, we can observe that each mild
attacker’ value is a convex combination of values of all
loyal agents. It is thus clear that z,(t) € o, Vg € N;/Fi(t).
For each loyal node p which does not adopt attackers’ state
values in the protocol (7) at time ¢, we just set ¢, ;(t) =
0,7 € V.

Now, let us state the main result of this paper.

Theorem 4.1: Consider the multi-agent system (2) with
interaction protocol (7). The communication topologies a-
mong the nodes satisfy a (2f+ 1)-robust graph. Then, the
resilient consensus can be achieved under the f-locally attack
model.

Proof: We firstly prove that the safety condition (5)
holds with p, i.e., z;(t) € o for any ¢ and ¢ € V,. From the
definition (4), we have z;(0) < M(0). Assume this case is
violated at time ¢*. When this happens, it holds that: x;(t) <
M(0) for t € [0,¢*] for all ¢ € V;; At time ¢* there exists a
node i € V; such that we have x;(t*) = M (0) and &;(t*) >
0. Suppose this case holds. Then recall the structure of (8),
we have

Ti(t*) = Z

JEN: [ Fi(t)

lq(;(¢7)) = q(2:(t7))], @ € Vi (10)

We can find that each term on the right hand side is non-
positive as g(z;(t*)) = ¢(M(0)) > g(z;(t*)); and therefore
Z;(t*) < 0, which results a contradiction. The other direction
x;(t) > m(0) can be proved using similar arguments. Then
the safety condition (5) is satisfied.

It remains to prove the consensus condition (6). We define
W = max;ey, {z;} — min ey, {x;} as a candidate Lyapunov
function. Due to the dynamic topologies, W may not be
continuously differentiable, but W is still continuous. Hence,
it is possible to analyze the Dini derivative of W to obtain
its convergence property. We define yax = 271, Tmin =
xy where I = max;{i : ©; = maxgey, {zx}}, and J 2
min;{¢ : x; = mingey, {xy}}. For the quantizer (1), we have
sign(g(x)) = sign(z), maxicy,(zi(t)) = q(@mex(£)), and
mlanqu(xz(t)) = q(-rmm(t)) Since q(xmax) > q(xz(t))
> q(xmin) for all ¢ € V), the following equations hold by
Lemma 2.3: Tmax = Zjex\/max [q(z;) — ¢(@max)] < 0, and
Tmin = ZjeNm;n lg(z;) — g(Zmin)] > 0. Thus, W is non-
increasing throughout the closed loop system evolution.

Now we prove DTW (t) — 0 as ¢ — oo. Suppose that
DTW (t) does not converge to zero as ¢ — oo. Under this
case, there must exist a constant £, > 0 so that for T > 0,
there is a positive t > T such that DTW (t) < —&q (note
that DTW < 0).

Then we know that there must exist a constant g > 0
and a time sequence {t;};cn, With ¢; — oo as i — oo, so
that DTW (t) < —eo and |t; 41 — t;] > d¢ for any 7. For At
where DT (t) is continuous, i.e. t, ¢ At for all 7, since the
safety condition (5) guarantees that x;(t) and &;(¢) bounded,
we have that DYW (t) is uniformly continuous. Therefore,
there is a §; > 0 such that for any time ¢ and ¢” satisfying
[t —t"| < é1, it holds that:

|DTW () - DTW ()] < %" (11)

This implies that

DWW (t) — |DTW(t;) — (DTW(t;) — DTV (1))
—(IDFW(t;)| — [DTW (t;) — DTW(t)])
—eo + %)

A IA

12)
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for Vt € [ti — 51,ti + (51]

Now consider the other situation when ¢; is right after a
discontinuity ;. Under this situation, DTW(t) < —gp/2
might not be satisfied if ¢ € [t; — d1,t; + 01] as DTW (¢)
may increase at t;. However, by assumption 4.1, there exists
a dwell time 7p before the next discontinuity time instant.
This ensures that there is a constant dy € (0,7p) such that
DTW(t) < —¢g¢/2 for all t € [ty,tx + d2]. Then, integrate
DTW (t) over (0,00), we have

[ DtW(tdt < lim Zf* O DYW(t)dt
< — lim

N—o0
ti+6 @
N—oo Z ft dt
= - hIIl N€05
= —o0, 5€m1n{§1,52}

13)

This is obviously a contradiction to objective condition
W(t) > 0, for all ¢ > 0. We have thus shown, by this
contradiction, that DYW (¢) — 0 as time to infinity, which
implies lim; W (t) = constant, i.e., the agents with
maximal and minimal state eventually keep fixed state. For
agent I, this is equivalent to >y, [a(2;) — q(Tmax)] =
0, and since ¢(Tmax) > ¢(x;) for all j € N7, the latter
implies that g(x;) = ¢(¥max) for all j € Nj. Pick any
k € N7, where k does not coincide with the maximum
node. Then ¢(zy) > q(x;), for all j € N} and hence
Ep = en,la(z;)—q(xx)] < 0.1f & <0, then necessarily
Z; < 0 since g(z) = ¢(Tmax). Hence we also have &y = 0
and hence ¢(z;) = q(zx) = ¢(Tmax) for all j € Nj. We
just repeat the same operation for a random [ € N}. Since
the initial network is a (2f + 1)-robust graph, after removing
up to 2f incoming links for each loyal node, the network is
still 1-robust from Lemma 2.1. Then by Lemma 2.2, it is
easy to know that the graph must contain a spanning tree,
and consequently, there exist a limited iterations of the above
process that diffuses to all node in the topology. Thus, all
nodes in the path to agent I from the root node possess the
same state of ¢(Zmax). Similarly, we can show that all nodes
in the path to agent J from the root node possess the same
state of ¢(zmin). We can obtain that all agents in spanning
tree hold the states of the maximum and the minimum, i.e.,
q(max) = q(@min). Therefore, the consensus property (6)
is satisfied. [ ]

5 4

Fig. 1. Communication graph G.
V. EXAMPLE AND SIMULATIONS

Let us consider a system consisting of 5 loyal nodes and 1
attack node. The communication links are connected as Fig.

30 T
loyal agent
— — —attack agent

251

20 /

quantized states

Fig. 2. State trajectories of the system with logarithmic quantizer (1).

1. The initial values of the agents are given by z1(0) = 17.2,
x2(0) = 20.5, z3(0) = 5.9, 24(0) = 8.7, z5(0) = 0.8, and
26(0) = 10.3. The logarithmic quantizer (1) with wg) = 30,
B = 0.1 is applied. Suppose that node 3 is an attack agent
whose dynamic is designed as

Ig(t) = *081‘3(0 + O8U3

For the simulations, let the reference input ug = 28.
Obviously, the goal of node 3 is to mislead the loyal nodes’
states to the extremely value 28 which is outside of the range
of interval g = [0.8,20.5].

Based on Lemma 2.1, one can verify that the system
topology in Fig. 1 satisfies a 3-robust graph. Also we can
find that there is at most one attack neighbor (f = 1) for
each node in the graph. Then, the robustness condition of
the network topology in Theorem 4.1 is satisfied. The state
trajectory of the system under the protocol (7) is shown
in Fig. 2. We can see that all loyal nodes’ ultimate states
converge to 13.4, which is within the safety interval set
0 =[0.8,20.5].

VI. CONCLUSIONS

The secure consensus control problem for multi-agent
systems in the face of malicious attacks has been studied
in this paper. Based on a local security mechanism, a novel
quantization-based resilient consensus protocol has been
designed to achieve agreement under a f-locally bounded
attack model. Theoretical analysis proved that, if the network
connectivity satisfies (2f + 1)-robust, then the information
consensus value of all the loyal nodes can be achieved.
Finally, the numerical example showed the effectiveness of
the algorithm.
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