
136 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017

Secure Consensus Control for Multi-Agent Systems
With Attacks and Communication Delays

Yiming Wu and Xiongxiong He

Abstract—This paper addresses the consensus problem for
nonlinear multi-agent systems suffering from attacks and com-
munication delays. The network studied in this paper consists
of two types of agents, namely, loyal agents and attack agents.
The loyal agents update their states based on delayed state
information exchanged with their neighbors. Meanwhile, the
attack agents can strategically send messages with wrong values,
or collude with other attack agents to disrupt the correct
operation of the system. We design a novel delay robust secure
consensus (DRSC) algorithm according to the neighboring nodes’
delayed information. Convergence analysis of the system under
the protocol designed is provided by using Lyapunov-Krasovskii
stability theory and Barbalat-like argument approach. Finally,
an example and simulation results are presented to demonstrate
the effectiveness of the algorithm.

Index Terms—Consensus, delay systems, multi-agent systems,
security.

I. INTRODUCTION

D ISTRIBUTED control over multi-agent networks is an
area that has received significant attention from the sys-

tems and control community recently. In multi-agent networks,
consensus control as a fundamental distributed control problem
has been a hot topic in the past decade due to its wide
applications such as sensor networks, traffic control, time syn-
chronization and formation flying. A number of authors have
investigated the consensus problems from various perspectives
in recent works; see [1]−[10] and references therein.

Recently, the security and resilience of consensus against
malicious attackers in multi-agent systems has attracted at-
tention of researchers. A first study of the resilience of
consensus to malicious attacks appears in [11], where the
authors consider the task of agreeing upon a common value
sent by loyal nodes, when the network graph is not completely
connected. The work [12] studies the security of linear con-
sensus networks for both non-colluding and Byzantine attacks.
In [13], [14], a novel graph-theoretic property in terms of
network robustness is developed, based on which a consensus
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protocol that is resistant to Byzantine nodes is proposed. The
results have been later extended to the case of second-order
multi-agent systems in the recent work [15]. In order to relax
the requirement of high network connectivity and some non-
local information, the authors of [16] propose an resilient
consensus strategy by setting a trusted node set within the
network. They prove that, when the trusted nodes make up a
connected dominating set, the network under this strategy can
be resilient to any number of malicious attackers. Furthermore
[17] provides a reputation-based resilient control protocol for
both leader-follower and leaderless consensus networks in the
presence of misbehaving nodes. Besides the above works,
researchers also investigate some iteration-based consensus
protocols against malicious nodes [18]−[20].

Most of the works mentioned above assume an ideal com-
munication channel among agents, i.e., each agent receives
the real-time states from its neighbors. It should be noted
that in real dynamical systems, delays are unavoidable in
information acquisition and transmission. An initial study on
consensus problems with delays can be found in [2], where a
necessary and sufficient condition in terms of the upper bound
of time delays is provided to guarantee the consensus. In [21],
a consensus analysis of a linear continuous-time system with
non-uniform delays is provided. For multi-agent systems with
discrete dynamics and time-varying topologies, the authors of
[22] introduce a kind of novel consensus protocols that are
based on repeatedly utilizing the same data at two time-steps.
In the presence of both delays and measurement noises, a
stochastic approximation theory based consensus protocol is
proposed in [23], and necessary and sufficient conditions are
obtained for achieving consensus under non-leader-follower
and leader-follower cases, respectively. By introducing dy-
namic encoder and decoder, a consensus protocol is designed
in [24] so that an exact consensus can be achieved when both
quantization and delay exist in transmission channels.

It can be seen that most of the above works deal with
the consensus problem with adversarial attacks and com-
munication delays separately. However, attacks and delays
may coexist in real multi-agent networks. As indicated in
[25], some adversarial nodes even have the ability to launch
message-delay attacks in communication channels via specific
technique. To the best of our knowledge, only a few works
involved the consensus problems in delayed dynamic networks
with attackers.
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The motivation of this work is to extend the consensus in
the existing results to a nonlinear network with both attackers
and delays. Specifically, in this paper we assume a directed
time-delayed multi-agent network, in which two classes of
agents are considered: loyal and attack agents. The loyal
agents will follow a properly designed control law all the
time, while the attack agents will not obey the law and
can update their states arbitrarily (with a malicious goal).
Most existing algorithms require agents to share some global
information or know the identities of their neighbors. In our
scheme, we develop a distributed coordinated control law by
using local delayed neighbors’ information. The system we
consider allows for time dependent communication properties
which are very important when our scheme take into account
random link removal and creation, nearest node coupling and
reconfigurable communication networks. Sufficient conditions
are given based on which asymptotic consensus of all loyal
agents can be guaranteed.

The rest of this paper is organized as follows. Some useful
preliminary results are reviewed in Section II. The problem
under investigation is formulated in Section III. The main
results are presented in Section IV. A simulation example is
given in Section V. Some conclusions are given in Section VI.

The following notation will be used throughout the paper:
The set of real numbers (respectively, n-dimensional real
Euclidean space, set of m × n real matrix) is denoted by R
(respectively, Rn, Rm×n). The set of all integers (respectively,
positive integers) is denoted by Z (respectively, Z+). For τ

≥ 0, C = C([−τ, 0],Rn) stands for the Banach space of
continuous functions mapping the interval [−τ, 0] into Rn

with the topology of uniform convergence. The norm on C
is defined as ‖φ‖ = sup−τ<θ<0 |φ(θ)|. Moreover, let x ∈
C([−τ, 0], Rn), then, for brevity, we denote xt = x(t + θ), θ

∈ [−τ, 0].

II. PRELIMINARIES AND ASSUMPTIONS

In this section, we briefly introduce some definitions and ba-
sic properties of functional differential equations, graph theory,
and attack model that are needed in our later development.

A. Stability of Functional Differential Equations

Here we give a brief review of stability properties for
functional differential equations. For more details, see [26],
[27].

Consider an autonomous retarded functional differential
equation:

ẋ(t) = f(xt) (1)

where Ω ∈ C and f : Ω → Rn. Given ϕ ∈ C and scalar ρ > 0,
we say that a function x(ϕ) is a solution to (1) on [−τ, ρ)
with initial condition ϕ, if x ∈ C([−τ, ρ), Rn), xt ∈ Ω, x(t)
satisfies (1) for t ∈ [0, ρ) and x(ϕ)(0) = ϕ.

Definition 1 (ω-limit set [26]): Let ϕ ∈ Ω. An element ψ

∈ Ω is said to be in the ω-limit set of ϕ (denoted as ω(ϕ)), if

x(ϕ)(t) is defined on [−ρ,∞) and there is a sequence of non-
negative real numbers tn →∞ as n →∞ such that ‖xtn(ϕ)
− ψ‖ → 0 as n →∞.

Definition 2 (positively invariant set [26]): A set M ⊂ Ω
is said to be positively invariant for (1) if for any ϕ in M

there is a solution x(ϕ)(t) of (1) that is defined on [−τ,∞)
such that xt ∈ M for all t ≥ 0 and x0 = ϕ.

If x(ϕ)(t) is a solution to (1) which is defined and
bounded on [−τ,∞), then 1) the orbit through ϕ, i.e., the
set {xt(ϕ) : t ≥ 0} is precompact, 2) ω(ϕ) is non-empty,
compact, connected and invariant, and 3) xt(ϕ) → ω(ϕ) as
t →∞.

For a given Lyapunov-Razumikhin function V = V (x), V :
D → R, D ⊆ Rn, the upper right-hand derivative of V with
respect to (1) is defined by:

D+V (φ) = lim
h→0+

sup
1
h

(V (φ(0) + hf(φ))− V (φ(0))).

Given a set Ω ⊂ C, we define:

EV = {ϕ ∈ Ω : max
s∈[−τ,0]

V (xt(ϕ)(s))

= max
s∈[−τ,0]

V (ϕ(s)),∀t ≥ 0} (2)

MV = Largest set in EV . (3)

Note that MV is the set of functions ϕ ⊂ Ω which can serve
as initial conditions for (1) such that xt(ϕ) satisfies

max
s∈[−τ,0]

V (ϕ(s)) = max
s∈[−τ,0]

V (xt(ϕ)(s))

for t ∈ (−∞,∞). Consequently, for a Lyapunov-Razumikhin
function V (x) and for any ϕ ∈ EV , we have D+V (xt(φ)) = 0
for any time t > 0 such that max−τ≤s≤0V (xt(ϕ)(s)) =
V (xt(ϕ)(0)). Then, we have the following result.

Lemma 1: Assume that there exists a Lyapunov-
Razumikhin function V = V (x) and a closed set Ω which
is positively invariant with respect to (1) such that

D+V (ϕ) ≤ 0, ∀ϕ ∈ Ω

s.t. V (ϕ(0)) = max
−τ≤s≤0

V (ϕ(s)). (4)

Then, for any ϕ ∈ Ω such that x(ϕ)(·) is defined and
bounded on [−τ,∞), ω(ϕ) ⊆ MV ⊆ EV , and we have

xt(ϕ) → MV as t →∞. (5)

Let h : (a, b) → R be a continuous function on (a, b). h is
non-increasing on (a, b) if and only if D+h(t) ≤ 0 for any
t ∈ (a, b). The following lemma will be useful in the rest of
the development [28], [29].

Lemma 2: Let I0 = {1, 2, . . . , n}. For i ∈ I0, let Vi(t, x) :
R × Rm → R be C1 and V (t, x) = maxi=1,2,...,nVi(t, x).
Then we have

D+V (t, x(t)) = max
i∈I(t)

V̇i(t, x(t)) (6)

where I(t) is the set of indices of the maximum of Vi(t, x(t))
at time t, i.e., I(t) = {i ∈ I0|Vi(t, x(t)) = V (t, x(t))}.
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B. Graph Theory

A directed weighted graph of order N is denoted by G
= {V, EG , AG}, where V = {1, 2, . . . , N} is a finite set of
nodes (representing the agents); EG is a set of edges which
are represented by pairs of node indices (i, j). For an edge
(i, j) ∈ EG , we say that i is the parent node, and j is the
child node. We say that node i has self-loop if (i, i) ∈ EG .
Here, we assume the graph excludes self-loop. The neighbor
set of node i is defined by N (G, i) = {j ∈ V|(j, i) ∈ EG}.
The adjacency matrix AG is a matrix representation of G with
[AG ]i,j = ai,j for (j, i) ∈ EG and [AG ]i,j = 0, otherwise. A
path from node i to node j in G is a sequence of ordered edges
of the form (i, e1), . . . , (ep, j) ∈ EG , where i, j, e1, . . . , ep are
distinct nodes. G contains a directed tree if each node in the
graph has exactly one parent node, except one node which is
called the root. Then, we say that G contains a spanning tree
if a subset of the edges forms a directed tree that connects
every other node through paths. Given a piecewise constant
function σ : R ≥ 0 → Q, where Q is a finite set which
indicates the possible communication topologies, let Gσ(t) =
{V, Eσ(t), Aσ(t)} denote a time-varying graph.

C. Attack Model

The attack agents in the system are rational and participate
with the goal of preventing other agents from achieving
consensus or driving their values into an invalid value (unsafe
region). According to their attack characteristics, attack agents
in existing works can be classified as crash failure [30], non-
colluding [20], malicious [18], [31] and Byzantine [32], [33]
agents. One type of attack agent is called Byzantine agent,
which usually has a complete knowledge of the whole system
and possesses an unlimited capability of communication and
computation. It can update its state in an arbitrary way and
send different information to distinct neighbors at the same
time. In most networks, Byzantine agent represents the worst-
case attacker, and therefore some algorithms working correctly
in networks with Byzantine attacker can be safely used under
any assumptions involving attackers. In this paper, we just
consider Byzantine agent as the attack agent.

It is clear that consensus cannot be achieved when attack
agents become the majority of the network. So, it is necessary
to restrict the number of attack agents. There are several
models based on the number and location of attackers. One
of these models is k-locally bounded, in which at most k

permanent neighbors of each agent in the network may be
attacker. We will refer to this attack model as the “k-locally
bounded Byzantine model”.

III. PROBLEM STATEMENT

The system to be considered is assumed to have N agents
with nl loyal agents and na = N−nl attack agents. Each agent
in the network is regarded as a node which connects with each
other via a directed graph G = {V, EG , AG}. We denote by Vl

and Va the node set of the loyal nodes and the node set of

attack nodes, respectively. It is clear that Vl ∪ Va = V and Vl

∩ Va = ∅.
Each loyal node i is assumed to take the following dynam-

ics:

ẋi(t) = ui(t), i ∈ Vl (7)

where xi(t) ∈ R and ui(t) ∈ R represent the state value and
control input of agent i, respectively. In multi-agent networked
systems, the received state information from neighbors are
often delayed due to transmission delay. Let τi,j ≥ 0 be the
non-uniform constant delay from node j to node i, and assume
that the delays are bounded, i.e., τi,j ≤ τmax, ∀i, j ∈ V , where
τmax is a positive constant.

The objective of this paper is to design a consensus protocol
ui(t) under which all loyal nodes can resist attackers and
resiliently achieve an agreement as time goes to infinity.

Now we present the detailed description of the delay-robust
secure consensus (DRSC) protocol: For node i ∈ Vl, it senses
or receives the delayed state information of its neighbors at
time t, and then sorts these data in a descending order. If there
are less than k neighbor nodes whose delayed state information
received by i larger than xi(t), then the loyal node i removes
all of these nodes’ information by correspondingly cutting off
the incoming edges. Otherwise, node i removes completely
the largest k state information from the above sorted list.
Similarly, If there are less than k neighbor nodes whose
delayed state information received by i smaller than xi(t),
then the loyal node i removes all of these nodes’ information
by correspondingly cutting off the incoming edges. Otherwise,
node i removes completely the smallest k state information
from the above sorted list.

It should be noted that while the previous network of the
system (7) seems to be a fixed graph, the above algorithm
involve manipulations of communication links can arbitrarily
lead the network to a stochastically time-varying graph Gσ(t)

= {V, Eσ(t), Aσ(t)}. Then, we denote by N (Gσ(t), i) the set
of agents whose information are received and kept by i after
the corresponding manipulations.

Then the control protocol for i is proposed as:

ui(t) =
∑

j∈N (Gσ(t),i)

ai,j(t)fi,j(xj(t− τi,j), xi(t)), i ∈ Vl

(8)

where ai,j(t) is the (i, j)th entry of the adjacency matrix at
time t and fi,j is the nonlinear function. To facilitate our
analysis, we impose the following assumptions:

Assumption 1: The nonlinear function fi,j (R × R) → R
in (8) is assumed to hold the following properties: 1) fi,j is a
continuous mapping and satisfies the local Lipschitz condition
with a Lipschitz constant, 2) fi,j(x, y) = 0 ⇔ x = y, and 3)
(x− y)fi,j(x, y) > 0,∀x 6= y.

Assumption 2: There exist scalars ā1 ≥ ā2 > 0, such that
ā2 ≤ ai,j(t) ≤ ā1 for all t and (j, i) ∈ Eσ(t).
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Assumption 3: Denote {tk}k∈Z+ as the set of all switching
time instants of σ(t). There exists a scalar τD > 0 for σ(t), as
a lower bound between any two instants, i.e., tk+1− tk ≥ τD.

Using protocol (8) for time-delayed multi-agent system (7),
we obtain the closed-loop network dynamics as





ẋi(t) =
∑

j∈N (Gσ(t),i)

ai,j(t)fi,j(xj(t− τi,j), xi(t))

i ∈ Vl; t > 0
xi(ϕ) = ϕi(t), t ∈ [−τmax, 0].

(9)

Note that for resilient protocol (8) above, each loyal node
may remove up to 2k values from the information it received.
However, when the attack nodes’ state information are not
inside the range of the top and bottom k values of the sorted
list. Under this case, it may possibly lead to loyal nodes adopt
these attack nodes’ values for updating their own states. This
special attack node is summarized in the following definition.

Definition 3: A mild attack node is a attack node q, q ∈ Va

whose state information is received and kept by its loyal
neighbor p, p ∈ Vl under the protocol (8). Then, its state
xq(t) can be expressed as a convex combination of all the
delayed state information of all loyal nodes. i.e.,

xq(t) =
∑

j∈Vl

ϕp,j(t)xj(t + θ)

q ∈ Va ∩N (Gσ(t), i); θ ∈ [−τmax, 0] (10)

where the scalars ϕp,j(t) ∈ R satisfy: 1) 0 ≤ ϕp,j(t) ≤ 1 and
2)

∑
j∈Vl

ϕp,j(t) = 1.
Define

VM (t) = max
i=1,2,...,nl

xi(t), Vm(t) = min
i=1,2,...,nl

xi(t) (11)

as the maximum and minimum values within all the loyal
nodes at time t. Moreover, let VM (ϕ) = γ+ and Vm(ϕ) = γ−

be the maximum and minimum within all loyal nodes under
initial values, respectively.

Definition 4: We say that system (7) achieves a secure
consensus if the following two conditions are satisfied:

Vm(ϕ) ≤ inf
t≥0

min
i∈Vl

xi(t) ≤ sup
t≥0

max
i∈Vl

xi(t) ≤ VM (ϕ) (12)

lim
t→∞

(xi(t)− xj(t)) = 0 ∀ i, j ∈ Vl. (13)

Remark 1: In Definition 4, condition (12) ensures that all
loyal nodes are within the secure interval determined by their
maximal and the minimal initial values. It is equal to that for
any t ≥ 0, Vm(t) ≥ γ− and VM (t) ≤ γ+. On the other hand,
condition (13) ensures all loyal nodes eventually converge to
the same state.

IV. MAIN RESULTS

In this section, we shall first introduce some useful topo-
logical features, and then we prove the convergence property
of the proposed consensus protocol (8).

Below we introduce some definitions of network robustness
which are adopted with minor changes, from [13].

Definition 5 (r-reachable set): Consider a directed graph
G = {V, Eσ(t)} and a nonempty subset S ⊂ V . The set S is
called an r-reachable set if there exists a node i ∈ S such that
|Ni\S| ≥ r, r ∈ Z+.

From the above definition, we can observe that an r-
reachable set S contains a node which has at least r neigh-
boring nodes outside of S at all times t ∈ R. Then we have
the following definition of r-robust graph.

Definition 6 (r-robust graph): Consider a directed graph
G = {V, Eσ(t)}. The graph is called an r-robust graph if for
every pair of nonempty, disjoint subsets of V , denoted as V1

and V2, there are at least one node i ∈ Vκ, such that |Ni\Vκ|
≥ r, r ∈ Z+, κ = 1, 2.

By employing the notion of robustness, some properties of
the r-robust graph are recalled below.

Lemma 3: Given an r-robust graph G, let G′ be the graph
generated by removing up to s (s < r) incoming edges of
each node in G, then, we have that G′ is (r − s)-robust.

Lemma 4: Let G be a directed graph. The network contains
a directed spanning tree, if and only if G is 1-robust.

Proof: 1) Necessity. We prove this by contradiction. As-
sume G contains a directed spanning tree but it is not a 1-robust
graph. By Definition 6, we know there exists two disjoint
subsets V1 and V2 of V , which do not have neighboring nodes
from outside their own sets. That means there is no information
flow between V1 and V2, which contradicts the assumption that
G contains a spanning tree.

2) Sufficiency. By contradiction, we first assume G does not
contain a directed spanning tree. Let A denote the adjacency
matrix of G. According to [34], [35], we get that A can
be decomposed, which means the set of nodes V can be
partitioned into two subsets with no information flow from
one to another. ¥

Lemma 5: Consider the multi-agent system (7) with
bounded communication delays. Assume each loyal node in
the network updates its state according to consensus protocol
(8), then one can show that for any node i, i ∈ Vl, xi(t) ∈
[γ−, γ+] for all t ≥ −τmax.

Proof: We will first prove that xi(t) ≤ γ+. According to
the bounds of initial values, we have that xi(θ) ≤ γ+ for θ

∈ [−τmax, 0]. Assume this condition is violated at time t∗.
When this happens, the following must hold: xi(t) ≤ γ+ for
t ∈ [−τmax, t

∗] for all i ∈ Vl; At time t∗ there exists a node i

∈ Vl such that we have xi(t∗) = γ+ and ẋi(t∗) > 0. Suppose
above case holds. Recall node i’ dynamics structure:

ẋi(t∗) =
∑

j∈N (Gσ(t),i)

ai,j(t)fi,j(xj(t∗ − τi,j), xi(t∗)), i ∈ Vl.

From the observations above, each term on the right hand
side is non-positive as xi(t∗) = γ+ ≥ xj(t∗ − τi,j) and ai,j

are positive weights; and therefore ẋi(t∗) ≤ 0, which leads to
a contradiction. The other direction xi(t) ≥ γ− can be easily
verified by a similar analysis as above. ¥
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For initial condition ϕ ∈ CD = C([−τmax, 0], D), the region
of attraction D is given by

D = {x ∈ Rnl : γ− ≤ xi ≤ γ+}. (14)

It follows from Lemma 5 that set CD of system (7) is
positively invariant.

Considering system (7), a Lyapunov-Krasovskii functional
is constructed as:

V̄ (xt) = V̄M (xt) + V̄m(xt) (15)

where

V̄M (xt) = max
θ1∈[0,τmax]

VM (x(t− θ1)) (16)

and

V̄m(xt) = − min
θ2∈[0,τmax]

Vm(x(t− θ2)). (17)

Note that V̄ (xt) which involves the system (7) with dynamic
topologies may not be continuously differentiable, however, it
is continuous all the time. Based on this condition, we can
analyze the Dini derivative of V̄ (xt) to study its convergence
property. We denote I and J as the indices that satisfy xI(t)
= maxi∈Vl

xi(t), xJ(t) = mini∈Vl
xi(t). There may exist

several such indices, one could choose those with the maximal
derivatives.

Theorem 1: Consider the nonlinear multi-agent system (7)
under a (2k + 1)-robust topology. Assume that each loyal
node updates its state according to consensus protocol (8)
with delayed neighbors’ information, then the DRSC can be
achieved under the k-locally bounded Byzantine model.

Proof: By Lemma 5, we know that the set containing all
of the values of loyal nodes is positively invariant, and hence
solutions xi(ϕ)(t), i ∈ Vl are bounded, which satisfies the
safety requirement (12).

It remains to verify that the consensus condition (13) is also
satisfied. For any graph topology p ∈ Q, let t1 = t − θ1 and
t2 = t − θ2, and based on Lemma 2, the Dini derivatives of
V̄M (xt) and V̄m(xt) along the trajectory of (9) are given as

D+V̄M (xt) = ẋI(t1)

=
∑

j∈N (Gσ(t1),I)

aI,jfI,j(xj(t1 − τI,j), xI(t1)), I ∈ Vl

(18)

D+V̄m(xt) = −ẋJ(t2)

= −
∑

j∈N (Gσ(t2),J)

aJ,jfJ,j(xj(t2 − τJ,j), xJ(t2)), J ∈ Vl.

(19)

By combining (18) and (19), we have

D+V̄ (xt) = D+V̄M (xt) + D+V̄m(xt)

= ẋI(t1)− ẋJ(t2)

=
∑

j∈N (Gσ(t1),I)

aI,jfi,j(xj(t1 − τI,j), xI(t1))

−
∑

j∈N (Gσ(t2),J)

aJ,jfi,j(xj(t2 − τJ,j), xJ(t2)). (20)

From (20) above, one can find that the Dini derivatives
of V̄M (xt) and V̄m(xt) are difficult to calculate directly.
Fortunately, one can determine that both of them are non-
positive according to a simple analysis of the following three
situations. Here we first analyze the case of D+V̄M (xt). Let
a time instant t∗ ∈ [t− τmax, t] be such that

xI(t∗) = max
θ∈[0,τmax]

max
i∈Vl

xi(t− θ). (21)

Then, consider the following three situations.
1) t∗ = t − τmax: In this case, D+V̄M (xt) < 0, if and

only if t∗ = t− τmax satisfies (21) and meanwhile ensure that
there is not a time instant t∗ ∈ (t − τmax, t) satisfying (21)
(see Fig. 1 (a)).

Fig. 1. Three situations of D+V̄M (xt).

2) t∗ ∈ (t− τmax, t): In this case, D+V̄M (xt) = 0, if and
only if there is a time instant t∗ ∈ (t− τmax, t) satisfying (21)
(see Fig. 1 (b)).

3) t∗ = t: While for this case, the value of D+V̄M (xt)
is not obvious. Since the state xI(t∗) = xI(t) ≥ xj(t− τI,j)
at this time instant, each term on the right hand of (18) is
non-positive (see Fig. 1 (c)).

Thus, we can conclude that D+V̄M (xt) ≤ 0. With the
similar analysis, we can get that D+V̄m(xt) ≤ 0, which is
omitted here for brevity.

Now we will prove that under our topology conditions
D+V̄ (xt) tends to zero as t → ∞. Suppose that D+V̄ (xt)
does not converge to zero as t → ∞. Then, there must be a
constant ε0 > 0 such that ∀T > 0, there is a time instant t

> T such that D+V̄ (xt) ≤ −ε0 (note that D+V̄ (xt) ≤ 0).
Therefore, there must be a constant δ0 > 0 and an sequence
of time {ti}i∈Z+ , with ti tends to infinity as i → ∞, such
that ∀ i, D+V̄ (xt) ≤ −ε0 and |ti+1 − ti| > δ0. Consider the
time interval ∆t on which D+V̄ (xt) is continuous, i.e., tk /∈
∆t. According to Assumptions 1 and 2, we know that ẋi(t)
remain bounded, which guarantees that D+V̄ (xt) is uniformly
continuous on ∆t. Therefore, there is a constant δ1 > 0 such
that for any t1 and t2 such that

∣∣t1 − t2
∣∣ < δ1, the inequality

∣∣D+V̄ (xt1)−D+V̄ (xt2)
∣∣ <

ε0

2

holds. This implies that for any t within the δ1-neighborhood
of ti, i.e., t ∈ [ti − δ1, ti + δ1], we have
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D+V̄ (xt) = −
∣∣D+V̄ (xti)− (D+V̄ (xti)−D+V̄ (xt))

∣∣
≤ −(

∣∣D+V̄ (xti
)
∣∣− ∣∣D+V̄ (xti

)−D+V̄ (xt)
∣∣)

≤ −ε0 +
ε0

2
= −ε0

2
.

Next, we consider the situation where ti is on the right
side of a discontinuous time instant tk. Under this case, the
inequality D+V̄ (xt) ≤ −ε0/2 might not hold if tk ∈ [ti
− δ1, ti + δ1] as D+V̄ (xt) may increase at tk. However,
according to Assumption 3, we know that there exists a dwell
time τD until the next discontinuity. Therefore there must
exist a δ2 ∈ (0, τD) such that D+V̄ (xt) ≤ −ε0/2 for all t

∈ [tk, tk + δ2]. Integrating D+V̄ (xt) over the time interval
(0,∞), we have

∫ ∞

0

D+V̄ (xt)dt ≤ lim
N→∞

N∑

i=1

∫ ti+δ

ti−δ

D+V̄ (xt)dt

≤ − lim
N→∞

N∑

i=1

∫ ti+δ

ti−δ

ε0

2
dt

= − lim
N→∞

Nε0δ = −∞, δ ∈ min{δ1, δ2}.

This is obviously a contradiction to V̄ (xt) ≥ 0, for all time
t. We have thus shown, by this contradiction, that D+V̄ (xt)
→ 0 as t trends to infinity, which implies that limt→∞V̄ (xt)
= constant, i.e., the nodes with maximum and minimum in
the system eventually hold fixed values. For node I , this is
equivalent to V̄M (xt) = xI(t1) = cM , as time t trends to
infinity, where cM is a constant value. Since the initial network
is a (2k + 1)-robust graph, after removing up to 2k incoming
edges for each loyal node, the network is still 1-robust from
Lemma 3. Then by applying Lemma 4, we know that the graph
must exist a spanning tree, and consequently, all loyal nodes
in the path from the root to node I possess the common state
cM . Then, let cm be a constant and V̄m(xt) = xJ(t2) = cm

as time t trends to infinity. With similar argument, we can get
that all loyal nodes in the path from the root to node J possess
the common state cm. Since the root in the network possesses
both the maximum and the minimum states, we have cM =
cm. ¥

V. NUMERICAL EXAMPLE

In this section, we present one numerical example to val-
idate the effectiveness of our proposed algorithm. Suppose
we have 5 agents disposed on a digraph as in Fig. 2 and
suppose agent 2 is an attack agent. The initial conditions of
the five agents’ states are assigned as x(ϕ) = [5, 4, 3, 2, 1]T

for ϕ ∈ [−τmax, 0]. We set the upper delay bound τmax = 1 s
in the simulation. To illustrate Theorem 1, let the interaction
graph be 3-robust. Note that, in order to verify the network
is 3-robust, we must thoroughly check any disjoint, nonempty
pair of subsets of agents to make sure that the network with
one agent in either of the two subsets has at least 3 neighbors
outside of its own set. Let τ1,2 = τ1,4 = τ1,5 = 0.4 s, τ3,2 =
τ3,4 = τ3,5 = 0.5 s, τ4,1 = τ4,2 = τ4,3 = τ4,5 = 0.6 s, τ5,1 =
τ5,2 = τ5,3 = τ5,4 = 0.7 s in (9). The nonlinear function is

chosen as fi,j(x, y) = arctan(x− y) for each loyal agent. It
is obvious that fi,j(·) satisfies the local Lipschitz condition.
The dynamics of the attacker (agent 2) is designed as

ẋ2(t) = −0.8x2(t) + 0.8u

where the attacker’ malicious input u = 8. Let the adjacency
matrix A(t) = [ai,j(t)] ∈ Rn×n be

A(t) =




0 2 0 1 3
1 0 2 2 1
1 3 0 2 3
0 1 3 0 1
2 2 3 1 0




when j ∈ Ni(σ(t)) and ai,j(t) = 0 otherwise.

Fig. 2. Network topology.
Since the graph is the so-called 3-robust graph, Theorem 1

indicates that secure consensus can be achieved under this 1-
locally bounded attack network. The agents’ trajectories under
the DRSC protocol (8) are shown in Fig. 3. It can be seen
that the loyal agents are not affected by agent 2 and achieve
resilient consensus. Furthermore, the results of DRSC in the
network of Fig. 2 with and without attack are shown in Fig. 4.
It can be seen that the convergence rate of consensus for multi-
agent network without attack is slightly faster than with attack.

Fig. 3. State trajectories of the network with attack.

VI. CONCLUSION

In this paper, we have investigated the secure consensus
problem of nonlinear multi-agent systems with attackers and
bounded communication delays. The traditional approaches
including Lyapunov analysis approach and Barbalat’ lemma
are not directly applicable to analyze the convergence property
for the class of systems under attacks as well as delays. The
results of this paper showed that if the network topology
satisfies (2k + 1)-robust, the loyal agents under uniformly
bounded communication delays can resist at most k neighbor-
ing attack agents to reach a consensus asymptotically. Finally,
the effectiveness of the proposed algorithm has been validated
via a numerical example.
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Fig. 4. Comparison of trajectories of the network with and without
attack.
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