[1] Chang L L, Yu C H(研究生), Zhang L M*, Xu X B, Dustdar S, Safety assessment of tunnel construction based on counterintuitivity detection using multi-profile multi-model ensemble learning, Expert Systems With Applications, 2024, 240: 122459.
[2] Chang L L, Zhang L M*, Modified boosting and bagging for building tilt rate prediction in tunnel construction, Automation in Construction, 2023, 155: 105059.
[3] Chang L L, Zhang L M*, Xu X B, Causality-based multi-model ensemble learning for safety assessment in metro tunnel construction, Reliability Engineering & System Safety, 2023, 234: 109168.
[4] Chang L L, Liu H(研究生), Zhang L M*, Xu X B, Adaptive learning for single-output complex systems via data augmentation and data type identification, Applied Soft Computing, 2023, 132: 109895.
[5] Chang L L, Fu C*, Wu Z J, Liu W Y, A data-driven method using BRB with data reliability and expert knowledge for complex systems modeling, IEEE Transactions on Systems, Man, Cybernetics: Systems, 2022, 52(11): 6729-6743.
[6] Chang L L, Zhang L M*, Fu C, Chen Y W, Transparent digital twin for output control using the belief rule base, IEEE Transactions on Cybernetics, 2022, 52(10): 10364-10378.
[7] Chang L L, Zhang L M*, Chang W J, Xu X B, Safety-oriented credibility-based fuzzy incremental learning for dependent outputs prediction, IEEE Transactions on Systems, Man, Cybernetics: Systems, 2023, 53(1): 380-393.
[8] Chang L L, Song X T(研究生), Zhang L M*, Uncertainty-oriented reliability and risk-based output control for complex systems with compatibility considerations, Information Sciences, 2022, 606: 512-530.
[9] Chang L L, Zhang L M*, Xu X B, Randomness-oriented multi-dimensional cloud-based belief rule base approach for complex system modeling, Expert Systems With Applications, 2022, 203: 117283.
[10] Chang L L, Zhang L M*, Explainable data-driven optimization for complex systems with non-preferential multiple outputs using belief rule base, Applied Soft Computing, 2021, 110: 107581.
[11] Chang L L, Zhang L M, Xu X J, Correlation-oriented complex system structural risk assessment using copula and belief rule base, Information Sciences, 2021, 564: 220-236.
[12] Chang L L, Xu X J, Liu Z G, Qian B, Xu X B, Chen Y W, BRB prediction with customized attributes weights and tradeoff analysis for concurrent fault diagnosis under uncertainty, IEEE Systems Journal, 2021, 15(1): 1179-1190.
[13] Chang L L, Fu C*, Wu Z J, Liu W Y, Yang S L,Data-driven analysis of radiologists’ behavior for diagnosing thyroid nodules, IEEE Journal of Biomedical and Health Informatics, 2020, 24 (11): 3111-3123.
[14] Chang L L, Fu C*, Zhu W, Liu W Y, Belief rule mining using the evidential reasoning rule for medical diagnosis, International Journal of Approximate Reasoning, 2020, 130: 273-291.
[15] Chang L L, Dong W, Yang J B, Sun X Y, Xu X B, Xu X J, Zhang L M*, Hybrid belief rule base for regional railway safety assessment with data and knowledge under uncertainty, Information Sciences, 2020, 518: 376-395.
[16] Chang L L, Zhou Z J, Liao H, Chen Y W, Tan X, Herrera F, Generic disjunctive belief rule base modeling, inferencing, and optimization, IEEE Transactions on Fuzzy Systems, 2019, 476: 1866-1880.
[17] Chang L L, Chen Y W, Hao Z Y, Zhou Z J, Xu X B, Xu X J, Tan, X, Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means, International Journal of Approximate Reasoning, 2019, 108: 1-20.
[18] Chang L L, Jiang J, Sun J B, Chen Y W, Zhou Z J, Xu X B, Tan X*, Disjunctive belief rule base spreading for threat level assessment with heterogeneous, insufficient, and missing information, Information Sciences, 2019, 476: 106-131.
[19] Chang L L*, Zhou Z J, Chen Y W, Liao T J, Hu Y, Yang L H, Belief rule base structure and parameter joint optimization under disjunctive assumption for nonlinear complex system modeling, IEEE Transactions on Systems, Man, Cybernetics: Systems, 2018, 48(9): 1542-1554.
[20] Chang L L, Zhou Z J, Chen Y W, Xu X B, Sun J B, Liao T J, Tan X*, Akaike information criterion-based conjunctive belief rule base learning for complex system modeling, Knowledge-Based Systems, 2018, 161: 47-64.
[21] Chang L L*, Zhou Z J, You Y, Yang L H, Zhou Z G, Belief rule based expert system for classification problems with new rule activation and weight calculation procedures, Information Sciences, 2016, 335: 75-91.
[22] Chang L L*, Sun J B, Jiang J, Li M J, Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor. Knowledge-Based Systems, 2015, 73: 69-80.
[23] Chang L L*, Zhou Y, Jiang J, Li M J, Zhang X H, Structure learning for belief rule base expert system: a comparative study, Knowledge-Based Systems, 2013, 39: 159-172.
[24] Chang L L*, Li M J, Jiang J, A variable weight approach for evidential reasoning,Journal of Central South University, 2013, 20: 2202-2211.
[25] Chang L L, Li M J, Cheng B, Zeng P, Integration-centric approach to system readiness assessment based on evidential reasoning, Journal of Systems Engineering and Electronics, 2013, 23(6): 881-890.
[26] Jiang J, Chang L L, Zhang L M, Xu X J, Retraceable and online multi-objective active optimal control using belief rule base, Knowledge-Based Systems, 2021, 233: 107553.
[27] Zhu W(研究生), Chang L L*, Sun J B, Wu G H, Xu X B, Xu X J, Parallel multipopulation optimization for belief rule base learning, Information Sciences, 2021, 556: 436-458.
[28] Zhou Y, Chang L L*, Qian B, A belief rule based model for information fusion with insufficient multi-sensor data and domain knowledge using evolutionary algorithms with operator recommendations, Soft Computing, 2019, 23 (13): 5129-5142.
[29] Tan X, Chang L L*, Chen Y W, Hao Z Y, Wu G H, Cooperative and distributed multiobjective optimization for heterogeneous belief rule base, IEEE Systems Journal, 2022, 16(1): 777-788.
[30] Fu C, Zhan Q S, Chang L L*, Liu W Y, Yang S L, Multi-criteria appraisal recommendation, Journal of the Operational Research Society, 2023, 74(1): 81-92.
[31] Li X, Jiang J, Sun J B, Yu H Y, Chang L L*, Accountable capability improvement based on interpretable capability evaluation using belief rule base. Journal of Systems Engineering and Electronics, 2023, accepted.
[32] 常雷雷,徐晓滨,徐晓健,基于主导从属框架的变结构置信规则库多目标优化方法,系统工程理论与实践,2022, 42(2): 514-526.
[33] 常雷雷,李孟军*,鲁延京,程贲,张晓航,基于主成分分析的置信规则库结构学习方法,系统工程理论与实践,2014, 34(5): 1297-1304.
[34] 常雷雷,李孟军*,项成安,证据推理方法中不完备信息影响因素分析,国防科技大学学报,2013, 35(1): 175-179.
[35] 孙建彬,常雷雷*,谭跃进,姜江,周志杰,基于双层模型的置信规则库参数与结构联合优化方法,系统工程理论与实践,2018,38(4): 983-993.
[36] 宋鑫涛,常雷雷*,戴家栋,徐晓滨,徐晓健,面向大型工程多安全指标的解析可追溯安全控制方法,控制与决策,2024,39(1): 95-102.
[37] 雷杰,徐晓滨,徐晓健,常雷雷*,基于置信规则库的并发故障诊断方法,系统工程与电子技术,2020,42(2): 497-504.
[38] 王小燕,孙建彬,赵青松,常雷雷*,不完备信息条件下基于置信规则库的能力满足度评估方法,系统工程与电子技术,2019,41(11)2507-2513.
[39] 徐晓滨,朱伟,徐晓健,侯平智,常雷雷*,基于平行多种群与冗余基因策略的置信规则库优化方法,自动化学报,2022,48(8),2007-2017.
[40] 韩润繁,陈桂明,常雷雷*,凌晓东,基于置信规则库的海基系统性能退化机理分析与预测,控制与决策,2019, 34 (3): 470-478.
[41] Zhou Z J*, Chang L L, Hu C H, Han X X, Zhou Z G, A new BRB-ER-based model for assessing the lives of products using both failure data and expert knowledge, IEEE Transactions on Systems, Man, Cybernetics: Systems, 2015, 99: 1-15.
[42] Fu C, Hou B B, Xue M, Chang L L, Liu W Y, Extended belief rule-based system with accurate rule weights and efficient rule activation for diagnosis of thyroid nodules, IEEE Transactions on Systems, Man, Cybernetics: Systems, 2023, 53(1): 251-263.
[43] Xu X B, Guo H H Zhang Z H, Yu S E, Chang L L, Steyskal F, Brunauer G, A cloud model-based interval-valued evidence fusion method and its application in fault diagnosis, Information Sciences, 2024, 658: 119995.
[44] Cao Y, Tang S W, Yao R Q, Chang L L, Yin X J, Interpretable hierarchical belief rule base expert system for complex system modeling,Measurement, 2024, 236: 114033.
[45] Xu X B, Zhang D Q, Bai Y, Chang L L, Li J N, Evidence reasoning rule-based classifier with uncertainty quantification, Information Sciences, 2020, 516: 192-204.
[46] Weng X, Xu X B, Chang L L, Hou P, Wang G, Dustdar S, Evidence fusion-based alarm system design considering coarse and fine changes of process variable, Journal of Process Control, 2022, 113: 68-79.
[47] Xu X J, Zhao Z Z, Xu X B, Yang J B, Chang L L, Xu X P, Wang G D, Machine learning-based wear fault diagnosis for marine diesel engine by fusing multiple data-driven models, Knowledge-Based Systems, 2020, 190:105324
[48] Zhou Z J, Hu G Y, Hu C H, Wen C L, Chang L L, A survey of belief rule base expert system, IEEE Transactions on Systems, Man, Cybernetics: Systems, 2019, 51(8): 4944-4958.
[49] Sun J B, Huang J, Chang L L, Jiang J, Tan Y J, BRBcast: A new approach to belief rule-based system parameter learning via extended causal strength logic, Information Sciences, 2018, 44: 51-71.
[50] Yang L H, Wang Y M, Chang L L, Fu Y G, A disjunctive belief rule-based expert system for bridge risk assessment with dynamic parameter optimization model, Computer & Industrial Engineering, 2017, 113: 459-474.
[51] Feng Z C, Zhou Z J*, Hu C H, Chang L L, Hu G Y, Zhao F J, A new belief rule base model with attribute reliability, IEEE Transactions on Fuzzy Systems, 2019, 27 (5): 903-916.
[52] Wang Y M*, Yang L H, Fu Y G, Chang L L, Chin K S, Dynamic rule adjustment approach for optimizing belief rule-base expert system, Knowledge-based Systems, 2016, 96: 40-60.
[53] Zhao F J, Zhou Z J*, Hu C H, Chang L L, Zhou Z G, A new evidential reasoning-based method for online safety assessment of complex systems, IEEE Transaction on Systems, Man, Cybernetics: Systems, 2018, 48(6): 954-966.
[54] Li G L, Zhou, Z J, Hu C H, Chang L L, Zhang H T, Yu C Q, An optimal safety assessment model for complex systems considering correlation and redundancy, International Journal of Approximate Reasoning, 2019, 104: 38-56.
[55] Li G L, Zhou Z J*, Hu C H, Chang L L, Zhou Z G, A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base,Safety Sciences, 2017, 93: 108-120.
[56] Li Z C, Qian B, Hu R, Chang L L, Yang J B, An elitist nondominated sorting hybrid algorithm for multi-objective flexible job-shop scheduling problem with sequence-dependent setups, Knowledge-Based Systems, 2019, 173: 83-112.
[57] Chang W J, Fu C, Chang L L, Yang S L, Triangular bounded consistency of interval-valued fuzzy preference relations, IEEE Transactions on Fuzzy Systems, 2022, 30(12): 5511-5525.