头像

王大伟

职称:副教授

毕业院校:浙江大学

邮件:davidw.zoeq@hdu.edu.cn

办公地点:

职务:

研究方向: 微纳器件、三维集成、多物理建模、多物理虚拟测试、可靠性分析

个人简介

王大伟,教授,博士生导师

 

研究领域聚焦射频器件-互连-集成芯片分层级与跨层级多物理建模仿真及可靠性评估等EDA技术

 

论著专利

 

科研项目: 

  • 主持国家基金青年基金C/重大研究计划培育项目、浙江省自然基金重大项目/青稞项目(青年人才项目)、全国重点实验室开放课题(2项)

  • 主持ZF预研基金子课题、浙江省属高校一般项目以及校企合作横向项目

  • 浙江省基金重大项目、JKW 1x3基金等参研单位负责人

  • 作为研究骨干参与国家重点研发计划、国家自然基金联合基金重点、KGJ xxx工业软件、浙江省重点研发计划等多个项目技术攻关。

 

学生指导:

  • 指导本科生发表学生一作SCI论文5篇,包括IEEE Trans. Antennas Propag.IEEE Trans. Circuits Syst. II-Express Briefs等期刊TOP论文3篇,指导本科生以第一发明人申请并授权发明专利3

  • 指导本科生获批浙江省新苗计划、国家级大创项目各1; 获批研究生课程思政项目1项(1/1,已结题)

  • 指导研究生一作发表科研论文40余篇、申请并授权发明专利10余项

  • 指导研究生荣获第三届/第四届IMMSACES-China 2023IEEE NEMO 2025、智芯会议2024等国内外学术会议优秀学生论文等奖项

  • 指导研究生获“中国光谷华为杯”第七届中国研究生创“芯”大赛行芯专项一等奖1项(国家级);获2024中国研究生创“芯”大赛·EDA精英挑战赛一等奖2项、二等奖1项、三等奖2项,获评大赛“优秀指导老师奖”(国家级);获首届全国先进计算技术创新大赛一等奖1

  • 指导研究生获批研究生科研创新基金项目5项、浙江省教育厅一般科研项目3

 

学术兼职:

  • 《固体电子学研究与进展》期刊青年编委

  • 《电子与封装》期刊青年编委

  •   Digital Twins and Applications 期刊青年编委

  •   Semiconductors and Heterogeneous Integration 期刊 Editorial Board Member

  •   Micromachines期刊客座编辑

 

学术奖励:

  • 2025 WAI Outstanding Young Scientist Award

  • 2025 IEEE JMMCT Best Paper Award

  • IEEE NEMO 2025 Best Student Paper Award(指导老师)

  • 2024智芯会议会议优秀学生论文奖(指导老师)

  • 第三届/第四届IMMS优秀论文奖(二等,指导老师)

  • 2023 ACES-China Best Student Poster Award(指导老师)



Email:davidw.zoeq@hdu.edu.cn

办公地址:杭州市钱塘区2号大街1158号杭州电子科技大学下沙校区4106

 

 


教育经历
  • 2010-07,吉林大学,学士学位(通信工程专业)

  • 2013-03,电信科学技术研究院,硕士学位(通信与信息系统

  • 2016-10,佐治亚理工学院,机电系,交流博士生

  • 2019-12,浙江大学,博士学位(电磁场与微波技术

工作经历

2026.01-至今,杭州电子科技大学,电子信息学院,教授、博士生导师

2025.01-2025.12,杭州电子科技大学,电子信息学院,副教授、博士生导师

2020.01-2024.12,杭州电子科技大学,电子信息学院,副研究员、硕士生导师

社会职务
  •  IEEE会员

  •  中国电子学会会员

  • 《固体电子学研究与进展》期刊青年编委

  • 《电子与封装》期刊青年编委

  •  Digital Twins and Applications 期刊青年编委

  •  Semiconductors and Heterogeneous Integration 期刊 Editorial Board Member

  •  Micromachines期刊客座编辑





研究领域

微纳器件、三维集成、多物理建模、多物理虚拟测试、可靠性分析等

教学与课程
横向科研



纵向科研

[1]集成芯片电--力耦合过程建模与快速仿真方法研究,国家自然科学基金-重大研究计划项目-培育项目,923731172024.01-2026.12,主持。

[2]氮化镓功率器件电--力耦合过程建模与高效数值计算,国家自然科学基金-青年科学基金项目,621011702022.01-2024.12,主持,已结题。

[3]射频集成芯片多物理轻量化建模与快速仿真方法研究,LQK26F010001,浙江省自然科学基金-青稞项目,2026.01-2028.12,主持。

[4]射频集成微系统智能设计方法研究,浙江省自然科学基金-重大项目,LD22F0400032022.01-2024.12,主持,已结题

[5]芯粒集成芯片多物理场耦合快速仿真方法研究,浙江省自然科学基金-重大项目,LD24F0400052024.01-2026.12,课题主持。

[6]氮化镓功率器件多场耦合过程建模与高效数值计算,重点实验室开放基金-科技部-国家重点实验室开放基金,K2022312022.01-2023.12,主持,已结题

[7]面向Chiplet芯片封装结构的有限元仿真模型库,重点实验室开放基金-之江实验室-科研项目课题,2022MG0AB042022.01-2023.12,联合主持,已结题

论文

[1] Da-Wei Wang, Bo-Wen Zhang, Le-Tian Wang, Haogang Wang, Wen-Sheng Zhao, “Data-driven non-intrusive reduced-order modeling framework for multiphysics digital twin models of large-scale electronic devices,” Chinese Journal of Electronics, vol. 35, no. 1, pp. 1-17, 2025.

[2] Da-Wei Wang, Bo-Wen Zhang, Le-Tian Wang, Peng Zhang, Wen-Sheng Zhao, “A proposal of fast thermal simulation method for 2.5-D advanced packaging to enable efficient thermal-aware placement optimization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025.

[3] Da-Wei Wang, Qing Zhang, Hang Wan, Wen-Sheng Zhao, “Finite element approach based numerical framework for device simulator,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 44, no. 8, pp. 3197-3207, 2025.

[4] Da-Wei Wang, Jia-He Zhu, Yi-Fan Liu, Gaofeng Wang, Wen-Sheng Zhao, “Modeling and Simulation of RRAM With Carbon Nanotube Electrode,” IEEE Transactions on Nanotechnology, vol. 23, pp. 1-8, 2024.

[5] Da-Wei Wang, Meng-Jian Yuan, Jia-Yun Dai, and Wen-Sheng Zhao, “Electrical Modeling and Characterization of Graphene-Based On-Chip Spiral Inductors,” Micromachines, vol. 13, no. 11, pp. 1829, Oct. 2022.

[6] Da-Wei Wang, Wen-Sheng Zhao, Zheng-Min Zhang, Qi Liu, Hao Xie, Wenchao Chen, Wen-Yan Yin, and Gaofeng Wang, “A hybrid streamline upwind finite volume-finite element method for semiconductor continuity equations,” IEEE Transactions on Electron Devices, vol. 68, no. 11, pp. 5421-5429, 2021.

[7] Da-Wei Wang, Wen-Sheng Zhao, Wenchao Chen, Hao Xie, and Wen-Yan Yin, “Fully coupled electrothermal simulation of resistive random access memory (RRAM) array,” Science China Information Science, vol. 63, no. 8, pp. 189401, 2020.

[8] Da-Wei Wang, Wen-Sheng Zhao, Wenchao Chen, Guodong Zhu, Hao Xie, Pingqi Gao, and Wen-Yan Yin, “Parallel simulation of fully coupled electrothermal processes in large-scale phase-change memory arrays,” IEEE Transactions on Electron Devices, vol. 66, no. 12, pp. 5117-5125, Dec. 2019.

[9] Da-Wei Wang, Wen-Sheng Zhao, Rui-Zhen Wang, Wen-Chao Chen, and Wen-Yan Yin, “Terahertz frequency selective surface based on metal-graphene structure with independent frequency tuneability,” IET Microwave-Antennas and Propagation, vol. 13, no. 7, pp. 911-916, Jun. 2019.

[10] Da-Wei Wang, Wenchao Chen, Wen-Sheng Zhao, Guo-Dong Zhu, Zhen-Guo Zhao, Jose E. Schutt-Aine and Wen-Yan Yin, “An improved algorithm for drift diffusion transport and its application on large scale parallel simulation of resistive random access memory arrays,” IEEE Access, vol. 7, no. 1, pp. 31273-31285, Mar. 2019.

[11] Da-Wei Wang, Wenchao Chen, Wen-Sheng Zhao, Guo-Dong Zhu, Kai Kang, Pingqi Gao, Jose E. Schutt-Aine and Wen-Yan Yin, “       ,” IEEE Access, vol. 7, pp. 3897-3908, Dec. 2018.

[12] Da-Wei Wang, Wen-Sheng Zhao, Hao Xie, Jun Hu, Liang Zhou, Wenchao Chen, Pingqi Gao, Jichun Ye, Yang Xu, Hong-Sheng Chen, Er-Ping Li and Wen-Yan Yin, “Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structures,” IEEE Transactions on Nanotechnology, vol. 16, no. 6, pp. 1132-1137, Nov. 2017.

[13] Da-Wei Wang, Wen-Sheng Zhao, Xiao-Qiang Gu, Wen-Chao Chen, and Wen-Yan Yin, “Wideband modeling of graphene-based structures at different temperatures using hybrid FDTD method,” IEEE Transactions on Nanotechnology, vol. 14, no. 2, pp. 250-258, 2015.

[14] Peng Zhang, Da-Wei Wang#, Wen-Sheng Zhao, Bin You, Jun Liu, Cheng Qian, and Hong Bo Xu, “Intelligent Design and Tuning Method for Embedded Thermoelectric Cooler (TEC) in 3D Integrated Microsystems,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 13, no. 6, pp. 788-797, Jun. 2023.

[15] Le-Tian Wang, Da-Wei Wang*, Bo-Wen Zhang, Xiao-Feng Yang, Wen-Sheng Zhao, “Proper orthogonal decomposition and long short-term memory neural network based multiphysics digital twin model for electronic device online condition monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 74, no. 2523113, 2025.

[16] Cong-Jian Mai, Chang-Sheng Mao, Jia-Hao Pan, Da-Wei Wang*, Yue Hu*, Xiang Wang, Wen-Sheng Zhao*, “Reinforcement Learning-Based Design of Interconnects With Reduced Far-End Crosstalk,” IEEE Transactions on Electromagnetic Compatibility, 2025.

[17] Yi-Fan Liu, Da-Wei Wang*, Zhe-Kang Dong, Hao Xie, Wen-Sheng Zhao*, “Implementation of multiple-step quantized STDP based on novel memristive synapses,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 32, no. 8, pp. 1369-1379, 2024.

[18]  Wen-Bin Gao, Xuan Lin*, Guo-Sheng Li, Hong-Shun Yin, Fei-Long Lv, Peng Zhang, Da-Wei Wang*, Wen-Sheng Qian, Hao Zhang, Wen-Sheng Zhao*, “Modeling and signal integrity analysis of silicon interposer channels based on MTL and KBNN,” Microelectronics Journal, vol. 147, no. 106186, 2024.

[19]  Peng Zhang, Da-Wei Wang*, and Wen-Sheng Zhao, “Investigation on Embedded Microchannel Heatsink for 2.5-D Integrated Package,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 13, no. 6, pp. 838-848, Jun. 2023.

[20] Yi-Hao Ma, Da-Wei Wang*, Yufeng Yu, and Wen-Sheng Zhao, “Design of Dual-Band Frequency-Selective Surfaces with Independent Tunability,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 12, pp. 12381-12386, 2022.

[21] Fu-Kang Lin, Da-Wei Wang*, Wen-Sheng Zhao*, Yufeng Yu, and Cheng Qian, “An ultrahigh-sensitivity microwave angular displacement sensor with a wide dynamic range,” Microwave and Optical Technology Letters, vol. 64, no. 10, pp. 1700-1706, May 2022.

[22] Xin-Qing Lei, Jia-He Zhu, Da-Wei Wang*, and Wen-Sheng Zhao, “Design for Ultrahigh-Density Vertical Phase Change Memory: Proposal and Numerical Investigation,” Electronics, vol. 11, no. 12, pp. 1822, Jun. 2022.

[23]  Tan-Yi Li, Wenchao Chen*, Da-Wei Wang*, Hao Xie, Qiwei Zhan, and Wen-Yan Yin, “Multiphysics Computation for Resistive Random Access Memories With Different Metal Oxides,” IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 133-140, 2022.

[24]  Bin-Xiao Wang, Wen-Sheng Zhao*, Da-Wei Wang*, Wen-Jing Wu, and Gaofeng Wang, “Sensitivity optimization of differential microwave sensors for microfluidic applications,” Sensors and Actuators A: Physical, 330: 112866, 2021.

[25] Wen-Sheng Zhao, Bin-Xiao Wang, Da-Wei Wang*, Bin You, Qi Liu, Gaofeng Wang*, “Swarm intelligence algorithm based optimal design of microwave microfluidic sensors,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 2077-2087, 2021.

[26] Peng Zhang, Da-Wei Wang*, Wen-Sheng Zhao*, Jiangtao Su, Bin You, and Jun Liu, “Multiphysics analysis and optimal design of compressible micro-interconnect for 2.5D/3D heterogeneous integration,” Electronics, vol. 10, no. 18, pp. 2240, 2021.

[27] Jia-He Zhu, Da-Wei Wang*, Wen-Sheng Zhao*, Jia-Yun Dai, and Gaofeng Wang, “A Proposal of Vertical MOSFET and Electrothermal Analysis for Monolithic 3-D ICs,”Electronics, vol. 10, no. 18, pp. 2241, 2021.

[28] Li-Chao Fan, Wen-Sheng Zhao*, Da-Wei Wang*, Qi Liu, Shichang Chen, Gaofeng Wang*, “An ultrahigh sensitivity microwave sensor for microfluidic applications,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 12, pp. 1201-1204, 2020. 



著作
专利成果
  • 基于微带互补开环谐振器结构的有源微波传感器,发明专利,专利申请,202011591212.3,电子信息学院(微电子学院),赵文生

    微波微流体传感器通道数值的联合仿真优化方法及系统,发明专利,专利申请,202011321042.7,电子信息学院(微电子学院),赵文生

    一种微波传感器谐振结构联合仿真优化方法及系统,发明专利,专利申请,202110878769.3,电子信息学院(微电子学院),王大伟

    混合流线迎风有限体积有限元方法、模型数值离散系统,发明专利,专利申请,202110427648.7,电子信息学院(微电子学院),王大伟

    一种实现高动态范围的微波位移传感器,发明专利,专利申请,202110455631.2,电子信息学院(微电子学院),赵文生

    用于2.5 维封装的柔性互连弹片及集成电路封装结构,实用新型,专利申请,202121362528.5,电子信息学院(微电子学院),王大伟

    基于射频识别的无线多路开关控制器及使用方法,发明专利,专利申请,202110356967.3,电子信息学院(微电子学院),刘琦

    一种用于2.5 维封装的柔性互连弹片及集成电路封装结构,发明专利,专利申请,202110680468.X,电子信息学院(微电子学院),王大伟

    一种片上电源配电网络的联合仿真优化方法,发明专利,专利申请,202110457427.4,电子信息学院(微电子学院),赵文生

    高集成度相变存储器阵列结构,发明专利,专利申请,202110779718.5,电子信息学院(微电子学院),王大伟

    基于 CSRR 的微波二维位移传感器及其数值的仿真优化方法,发明专利,专利申请,202111091674.3,电子信息学院(微电子学院),赵文生

    一种基于SOI 和TSV 技术的新型垂直MOSFET 结构,发明专利,专利申请,202110961870.5,电子信息学院(微电子学院),王大伟

    用于微流体的温度补偿微带传感器,发明专利,专利申请,202111091675.8,电子信息学院(微电子学院),赵文生

    用于半导体连续性方程的流线迎风有限元方法及系统,发明专利,专利申请,202110427767.2,电子信息学院(微电子学院),王大伟

    一种FSS单元、双频点单独可调FSS,发明专利,专利申请,202110447624.8,电子信息学院(微电子学院),王大伟

    一种微波谐振式角度传感器,发明专利,专利申请,202110447576.2,电子信息学院(微电子学院),赵文生

    基于耦合微带线的微波位移传感器,发明专利,专利申请,202110455636.5,电子信息学院(微电子学院),赵文生

    基于电磁表面单元结构的微波传感器的联合仿真优化方法,发明专利,专利申请,202110457231.5,电子信息学院(微电子学院),赵文生

    一种折叠式人工表面等离激元低通滤波器,发明专利,专利申请,202111270619.0,电子信息学院(微电子学院),赵文生

    石墨烯片上螺旋电感器的等效电路模型及参数计算方法,发明专利,专利申请,202111476940.4,电子信息学院(微电子学院),赵文生

    基于改进缺陷地结构的高灵敏度微波微流控传感器,发明专利,专利申请,202111575827.1,电子信息学院(微电子学院),赵文生

    基于负载开口谐振环的高灵敏度微波微流控传感器,发明专利,专利申请,202111575898.1,电子信息学院(微电子学院),赵文生

    基于串联LC谐振的高灵敏度微波微流控差分传感器,发明专利,专利申请,202111575826.7,电子信息学院(微电子学院),赵文生

    一种折叠式人工局域表面等离激元微波微流传感器,发明专利,专利申请,202111286860.2,电子信息学院(微电子学院),赵文生

    基于改进开口谐振环的高灵敏度微波微流控传感器,发明专利,专利申请,202111576931.2,电子信息学院(微电子学院),赵文生


荣誉及奖励
软件成果