头像

冯文卿 工学博士学位

职称: 邮箱:wq_feng@hdu.edu.cn 研究方向:遥感图像智能解译、计算机视觉、人工智能 导师类型:硕导
最新更新

冯文卿,男,19918月,武汉大学摄影测量与遥感专业博士,杭州电子科技大学特聘副教授。2013年获华中农业大学理学学士学位,2015年、2020年分别获武汉大学工学硕士和博士学位。2022年底入职杭州电子科技大学,20234月被评为学术学位、专业学位硕士导师。现为我院数字孪生与机器视觉研究组成员。


2009.9-2013.6 华中农业大学资源与环境学院,地理信息系统专业,获理学学士学位。

2013.9-2015.6 武汉大学遥感信息工程学院,测绘工程专业,获工学硕士学位。

2015.9-2020.6 武汉大学测绘遥感信息工程国家重点实验室,摄影测量与遥感专业,获工学博士学位。


2020.7-2022.11 国网湖南省电力有限公司防灾减灾中心 中级工程师

2022.12-至今 杭州电子科技大学计算机学院 特聘副研究员


研究方向:遥感图像智能解译、计算机视觉、人工智能。主要利用深度学习等方法进行遥感影像语义分割、遥感影像目标检测、遥感影像典型地物要素提取、遥感影像变化检测等。担任IEEE Transactions on Geoscience and Remote Sensing, IEEE Geoscience and Remote Sensing Letters, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, International Journal of Applied Earth Observation and Geo-information, Remote Sensing, International Journal of Remote SensingRemote Sensing Letters等国际期刊审稿人。主持国家自然科学基金青年基金项目1项,参与国家自然科学基金项目多项,目前合计已发表论文20余篇。


纵向科研

(1) 国家自然科学基金委员会, 青年科学基金项目, 42101358, 深度学习与GIS矢量耦合的典型要素更新方法, 2022-01-01 至 2024-12-31, 30万元, 在研, 主持


横向科研

(1) AR展示应用软件定制开发, 2023-01-01 至 2023-08-30, 40万元, 结题

(2) 简单透镜XXXX标定方法研究, 2023-08-04 至 2023-10-31, 40万元, 结题

论文

[1] Feng, Wenqing, Fangli Guan, Jihui Tu, and Wei Xu. 2025. UV-AdaptFormer: adapting the segment anything model for urban village identification from high-resolution satellite imagery. Remote Sensing Letters16(6), 573–583.

[2] Feng, Wenqing, Fangli Guan, Jihui Tu, Chenhao Sun, and Wei Xu. Water-Adapter: adapting the segment anything model for surface water extraction in optical very-high-resolution remotely sensed imagery. Remote Sensing Letters 15, no. 11 (2024): 1132-1142.

[3] Feng, Wenqing, Fangli Guan, Chenhao Sun, and Wei Xu. 2024. Road-SAM: Adapting the Segment Anything Model to Road Extraction From Large Very-High-Resolution Optical Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, vol. 21, pp.1-5.

[4] Feng, Wenqing, Fangli Guan, Chenhao Sun, and Wei Xu. 2024. Feature-Differencing-Based Self-Supervised Pre-Training for Land-Use/Land-Cover Change Detection in High-Resolution Remote Sensing Images. Land 13, no. 7: 927.

[5] Feng, W., Guan, F., Sun, C., and Xu, W.: Cross-modal change detection flood extraction based on self-supervised contrastive pre-training, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-2024, 75–82, https://doi.org/10.5194/isprs-annals-X-1-2024-75-2024, 2024.

[6] Wenqing Feng, Fangli Guan, Jihui Tu, Chenhao Sun, Wei Xu. 2023. Detection of Changes in Buildings in Remote Sensing Images via Self-Supervised Contrastive Pre-Training and Historical Geographic Information System Vector Maps. Remote Sensing, 15, no. 24: 5670.

[7] Wenqing Feng, Jihui Tu, Chenhao Sun, Wei Xu. 2023. Barlow twin self-supervised pre-training for remote sensing change detection. Remote Sensing Letters, 14:10, 1085-1097.

[8] Yunlong Wang, Wenqing Feng, Kun Jiang, Qianchun Li, Ruipeng Lv and Jihui Tu. 2023. Real-Time Damaged Building Region Detection Based on Improved YOLOv5s and Embedded System From UAV Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 4205-4217.

[9] Wenqing Feng, Haigang Sui, Jihui Tu, Weiming Huang, Kaimin Sun. 2018. A novel change detection approach based on visual saliency and random forest from multi-temporal high-resolution remote-sensing images. International Journal of Remote Sensing, 39, 7998–8021.

[10] Wenqing Feng, Haigang Sui, Jihui Tu, Weiming Huang, Chuan Xu, Kaimin Sun. 2018. A novel change detection approach for multi-temporal high-resolution remote sensing images based on rotation forest and coarse-to-fine uncertainty analyses [J]. Remote Sensing, 10(7): 1015-1037.

[11] Wenqing Feng, Haigang Sui, Weiming Huang, Chuan Xu, Kaiqiang An. 2019. Water body extraction from very high-resolution remote sensing imagery using deep u-net and a superpixel-based conditional random field model [J]. IEEE Geoscience and Remote Sensing Letters, 16(4):618-622.

[12] Wenqing Feng, Haigang Sui, Li Hua, Chuan Xu, Weiming Huang. 2020. Building extraction from VHR remote sensing imagery by combining an improved deep convolutional encoder-decoder architecture and historical land use vector map. International Journal of Remote Sensing, 41(17):6595-6617.

[13] 冯文卿眭海刚涂继辉孙开敏黄伟明. 2017. 高分辨率遥感影像的随机森林变化检测方法测绘学报, (11):90-100.

[14] 冯文卿眭海刚涂继辉孙开敏. 2017. 联合像素级和对象级分析的遥感影像变化检测测绘学报, 46(9):1147-1155.

[15] 眭海刚冯文卿李文卓孙开敏徐川. 2018. 多时相遥感影像变化检测方法综述武汉大学学报(信息科学版), 43(12):132-145.

[16] Wenqing Feng, Haigang Sui, Li Hua, Chuan Xu. 2019. Improved deep fully convolutional network with superpixel-based conditional random fields for building extraction. IEEE international Geoscience and Remote Sensing Symposium (IGARSS), July 28-August 2, Yokohama, Japan.

著作
最新更新