头像

魏龙

职称:副教授

毕业院校:华东师范大学

邮件:lwei@hdu.edu.cn

办公地点:

职务:

研究方向:

个人简介

杭州电子科技大学钱塘学者特聘教授,美国《Mathematical Reviews》评论员,德国《Zentralblatt MATH》评论员。研究领域为偏微分方程及其应用。目前主要研究兴趣包括非线性色散波方程、非线性椭圆型偏微分方程的相关问题研究。近年来,在非线性色散波方程的适定性、解的爆破分析、衰减持续性,半线性椭圆方程解的集中现象、全空间解的渐近性态等方面取得了一系列成果,在 J. Differential Equations,J. Evol. Equ., J. Dyn. Differ. Equ., J. Math. Fluid Mech.Q. Appl. Math., Discrete Contin. Dyn. Syst.-A, Discrete Contin. Dyn. Syst.-B,  Adv. Differ. Eqs., Adv. Nonlinear Stud., Nonlinear Analysis, J. Math. Anal. Appl., Nonlinear Differ. Equ. Appl., Comm. Pure Appl. Anal., Pacific J. Math., J.Math.Phy.等杂志上发表论文40 余篇。


教育经历
  • 博士研究生, 华东师范大学


工作经历
社会职务
研究领域

偏微分方程,非线性分析

教学与课程
横向科研
  • 空间形式中等参超曲面分类的研究、球面稳定同伦群的计算,2007-12-25,2008-01-01,王杰峰,在研,理学院,1

  • 一类奇异摄动椭圆方程解的集中现象,2007-09-01,2007-09-01,王阳,在研,理学院,数学,3

  • 某些非线性偏微分方程的奇异性分析,2008-12-25,2007-09-01,魏龙,在研,理学院,数学,3

  • 紧流形上的非线性波动方程的周期解,2009-11-16,2009-10-01,童常青,在研,理学院,数学,3

  • 无穷Laplace方程主特征值问题解的正则性,2021-04-20,2021-03-01,冯晓萌,在研,自选课题(校内项目),理学院,数学,3


纵向科研
  • 多物种扩散模型中的某些偏微分方程(组)研究,2011-08-16,2012-01-01,2015-04-24,王阳,结题,国家自然科学基金项目,理学院,数学,23

  • 某些非线性椭圆偏微分方程解的集中现象,2009-12-14,2010-01-01,2011-05-25,王阳,结题,理学院,数学,3

  • 多分量超可积方程族及其有限维可积超哈密顿系统,2012-05-17,2012-01-01,2016-04-06,韩敬伟,结题,省、市、自治区科技项目,理学院,数学,5

  • 具有奇性的椭圆及抛物方程的相关问题研究,2012-05-17,2012-01-01,2015-08-28,魏龙,结题,理学院,数学,6

  • 对具有非局部扩散项的生态模型动力学行为的研究,2014-05-05,2014-01-01,2017-05-02,王阳,结题,省、市、自治区科技项目,理学院,数学,6

  • 几何与物理中的某些椭圆问题奇异解的研究,2010-02-12,2009-12-01,魏龙,在研,理学院,数学,1.1

  • Euler-Poisson方程组解的爆破分析与渐近性态,2020-11-13,2021-01-01,魏龙,在研,省、市、自治区科技项目,理学院,数学,5


论文

  • ● Z. Bai, Y. Wang, L. Wei, Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg-Whitham system, J. Evol. Equ., 24(10) (2024),1-24.

  •  L. Wei, Notes on wave-breaking phenomena for a Fornberg-Whitham-type equation, J. Differential Equations 362 (2023), 250-265.

  •  Long Wei, Wave breaking for the Constantin-Lannes equation revisited, J. Math. Fluid Mech.25 (1) (2023), 8(P1-7).

  • ● Long Wei, The Cauchy problem for a modified Euler-Poisson system in one dimension, Quart. Appl. Math. 79 (2021), no. 4, 667-693.

  • ● Long Wei, New wave-breaking criteria for the Fornberg-Whitham equation, J. Differential Equations 280 (2021), 571-589.

  • ● Long Wei, Yang Wang, The Cauchy problem for a generalized Riemann-type hydrodynamical equation, J. Math. Phys. 62 (2021), 041502(P1-16).

  • ● Long Wei, Qi Zeng, Blow-up analysis and spatial asymptotic profiles of solutions to a modified two-component hyperelastic rod system, Anal. Math. Phys. 11(2021), 3(P1-15).

  • ● Long Wei, Qi Zeng, Persistent decay of solutions to the k-abc equation in weighted Lp spaces, J. Dynam. Differential Equations 32 (2020), 219-232.

  • ● Long Wei, Wave breaking, global existence and persistent decay for the Gurevich-Zybin system, J. Math. Fluid Mech. 22 (2020), 47(P1-14).

  • ● Zongming Guo, Long Wei, Radial symmetry of entire solutions of a biharmonic equation with supercritical exponent, Adv. Nonlinear Stud. 19 (2019), 291-316.

  • ● Long Wei, Yang Wang, Symmetry analysis, conserved quantities and applications to a dissipative DGH equation, J. Differential Equations 266 (2019), 3189-3208.

  • ● Zongming Guo,Long Wei,A perturbed fourth order elliptic equation with negative exponent, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 4187-4205.

  • ● Long Wei, Wave breaking analysis for the Fornberg-Whitham equation, J. Differential Equations 265 (2018), 2886-2896.

  • ● Long Wei, Yang Wang, Blowup criterion and persistent decay for a modified Camassa-Holm system, J. Math. Phys. 59 (2018), 021501(P1-11).

  • ● Long Wei, Zhijun Qiao,Yang Wang, Shouming Zhou, Conserved quantities, global existence and blow-up for a generalized CH equation, Discrete Contin. Dyn. Syst. 37 (2017), 1733-1748.

  • ● Shouming Zhou, Zhijun Qiao, Chunlai Mu, Long Wei, Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude, J. Differential Equations 263 (2017), 910-933.



 

著作
专利成果
荣誉及奖励
软件成果