头像

郭艳

职称:副教授

毕业院校:南开大学

邮件:guoyan@hdu.edu.cn

办公地点:

职务:

研究方向:

个人简介
教育经历
  • 2019-20,新加坡南洋理工大学,电子电气工程学院,访问学者

  • 2012-06, 南开大学现代光学研究所,光学工程专业,博士研究生

  • 2009-06,南开大学 现代光学研究所,光学工程专业,

  • 2005-06,西北大学物理系,光信息科学与技术本科,理学学士


工作经历
2012-7至今,杭州电子科技大学,自动化学院


社会职务
研究领域
微纳光学器件设计与仿真,表面等离激元传感器设计,微结构光场调控


教学与课程
机器视觉,C++程序设计,工程电磁场,视觉检测算法与应用


横向科研
  • 单码道绝对式位置编码器关键技术研究,2012-10-17,2012-10-01,尚平,在研,自动化学院(人工智能学院),3

  • 金属亚波长结构透射光束聚焦以及超分辨特性的理论研究,2012-10-17,2012-10-01,郭艳,在研,自动化学院(人工智能学院),3

  • PbSe 量子点掺杂的光纤激光器研究,2015-11-05,2015-10-25,魏凯华,在研,自动化学院(人工智能学院),4

  • 基于递推子空间的结构模态参数在线识别研究,2012-10-17,2012-10-01,章国稳,在研,自动化学院(人工智能学院),3


纵向科研
  • 窄带隙PbSe量子点掺杂硅酸盐玻璃光纤1480nm激射的关键技术研究,2015-11-05,2016-01-01,2019-04-25,魏凯华,结题,省、市、自治区科技项目,自动化学院(人工智能学院),信息科学与系统科学,5

  • 列车激励下高铁桥梁模态参数识别方法研究,2015-11-05,2016-01-01,2020-05-08,章国稳,结题,自动化学院(人工智能学院),力学,5

  • 基于递推自动化ERA的桥梁模态参数在线识别方法研究,2014-04-21,2014-10-01,章国稳,在研,自动化学院(人工智能学院),土木建筑工程,1.2

  • 利用表面等离子体基元来增强金属微纳结构近场热辐射光谱的空间相干特性,2013-08-15,2014-01-01,2017-03-14,郭艳,结题,国家自然科学基金项目,自动化学院(人工智能学院),信息科学与系统科学,25

  • 运行状态下海上风机支撑结构模态参数识别方法研究,2017-08-18,2018-01-01,2021-03-29,章国稳,结题,国家自然科学基金项目,自动化学院(人工智能学院),工程与技术科学基础学科,24


论文
  • 1)        Chunfeng Shen, Yan Guo*, Jingcheng Zhang, Kaihua Wu. NSGA II Calculated Surface Plasmon Resonance-Based Temperature Sensor. Plasmonics (2025). https://doi.org/10.1007/s11468-025-02859-y

    2)        Chunfeng Shen, Kaihua Wu*, Jingcheng Zhang, Yan Guo. Polydimethylsiloxane-Assisted Surface Plasmon Resonance-Based Temperature Sensor. Plasmonics 2024,

    3)        Kaihua Wei, Xianglong Su, Jianxing Zheng, Shuang Liu, Bohuan Chen, Yan Guo*. Dual BaTiO3 layer-cavity assisted enhancement of copper-based surface plasmon resonance biosensor. Optik 2024, 227, 171612   DOI: 10.1016/j.ijleo.2024.171612

    4)        Yan Guo*, Xianglong Su, Kaihua Wu, and Ken-Tye Yong*. Numerical analysis of three-dimensional nanodisk-array based Surface Plasmon Resonance biosensors for SARS-CoV-2 detection. Plasmonics 2023, 18(2), 769-779

    5)        Yan Guo, Xianglong Su, Bohuan Chen, Shuang Liu, and Kaihua Wei*. Numerical analysis of black phosphorus assisted copper-based bimetallic enhanced surface plasmon resonance biosensor. Physica Status Solidi A: Applications and Materials Science, 2023, 220(7), 2200482

    6)        Chandreyee Manas Das, Yan Guo, Daniel Puiu Poenar, Yogambha Ramaswamy, Jiaqing Xiong, MingJie Yin*, and Ken-Tye Yong*. In-depth conceptual study of an enhanced plasmonic sensing system using antireflective coatings and perovskites for the detection of infectious viral antigens. ACS Appl. Electron. Mater.2022, 4(4), 1732-1740

    7)        Chandreyee Manas Das, Lixing Kang, Dianyi Hu, Yang Guang, Yan Guo, Mingwei Chen, Philippe Coquet, and Ken-Tye Yong*. Graphene-coated gold chips for enhanced Goos-Hanchen shift plasmonic sensing. Phys. Status Solidi. 2021, 218, 2000690

    8)        Chandreyee Manas Das, Yan Guo, Lixing Kang, Ho‐pui Ho, and Ken‐Tye Yong*. Investigation of plasmonic detection of human respiratory virus. Adv. Theory Simul. 2020, 3(7), 2000074

    9)        Chandreyee Manas Das, Yan Guo, Guang Yang, Lixing Kang, Gaixia Xu, Ho-Pui Ho, and Ken-Tye Yong*. Gold nanorod assisted enhanced plasmonic detection scheme of COVID-19 SARS-CoV-2 spike protein. Adv. Theory Simul. 2020, 3(11), 2000185

    10)        Yan Guo*, Nishtha Manish Singh, Chandreyee Manas Das, Kaihua Wei, Kuanbiao Li, Philippe Coquet, and Ken-Tye Yong*. Effect of ultra-shallow metallic gratings on sensitivity enhancement of Goos-Hanchen shift in SPR-based sensors. Optik 2020, 224, 165690

    11)        Yan Guo *, Nishtha Manish Singh, Chandreyee Manas Das, Qingling Ouyang, Lixing Kang, Kuanbiao Li, Philippe Coquet, and Ken-Tye Yong*. Two-dimensional PtSe2 theoretically enhanced Goos-Hanchen shift sensitive plasmonic biosensors. Plasmonics 2020, 15(6), 1815-1826

    12)        Yan Guo *, Nishtha Manish Singh, Chandreyee Manas Das, Qingling Ouyang, Lixing Kang, Kuanbiao Li, Philippe Coquet, and Ken-Tye Yong*. Plasmonic-based sensitivity enhancement of a Goos-Hanchen shift biosensor using transition metal dichalcogenides: a theoretical insight. New Journal of Chemistry 2020, 44(37), 16144-16151

    13)        赖小敏*, 郭艳, 范姗慧, 魏凯华. Correction for the inherent aberration of liquid crystal spatial light modulator. Holography, Diffractive Optics, and Applications VIII

    14)        Yan Guo*, Kuanbiao Li, Ying Xu, and Kaihua Wei. Near-field thermal radiation of deep-subwavelength slits in the near infrared range. Optics Express 2017, 25(19), 23207-23214

    15)        Yan Guo, Jianjun Yang*, and Kuanbiao Li. Highly efficient excitation of surface plasmon polaritons under asymmetric dielectric surroundings. Plasmonics 2016, 11(1), 11-15

    16)            Kaihua Wei*, Pinghui Wu, Ruhua Wen, Jiangxin Song, Yan Guo, and Xiaomin Lai. High power burst-mode operated sub-nanosecond fiber laser based on 20/125 μm highly doped Yb fiber. Laser Physics 2016, 26(2), 025104

    17)            Wei* Kaihua, Wen Ruhua, and Guo Yan. 3.7GHz repetition rate operated narrow-bandwidth picosecond pulsed Yb fiber amplifier with an all-fiber multiplier. Laser Physics Letters 2016, 13(4), 045102

    18)            Kaihua Wei*, Yan Guo, Xiaomin Lai, and Shanhui Fan. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output. Laser Physics 2016, 26(7), 075101

    19)     Yan Guo, Bo Zhao, and Jianjun Yang*. Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space. Optics Express 2013, 21(12), 13949-13957

    20)     Yan Guo, Jianjun Yang, and Shengjiang Chang. Spatial quantizing a subwavelength slit to upgrade its optical properties. Optics Express 2011, 19(6), 5319-5326

    21)     Yan Guo, and Jianjun Yang. Anatomical analysis of the light transmission through a single subwavelength metal slit by the FDTD method. Journal of Modern Optics 2011, 58(17), 1499-1508



著作
专利成果
荣誉及奖励
软件成果