头像

石厅 副教授

自动化学院(人工智能学院)

控制科学与工程

职务:

毕业院校: 浙江大学
邮件: tingshi@hdu.edu.cn
办公地点:
电话:

10 访问

个人简介

石厅,男。2009年毕业于浙江大学控制科学与控制工程专业,获博士学位,201110月至201310月在浙江大学控制科学与工程博士后流动站工作,2016年至2017年赴澳University of Adelaide访问学习。从事控制理论与应用的研究工作。主要方向包括模型预测控制、最优控制、强化学习、Q学习等理论为主。将控制理论与人工智能相结合,针对多机器人、无人驾驶等系统开展相关研究。

教育经历
工作经历
社会职务
研究领域
教学与课程
纵向科研

1. 作为主持人承担浙江省自然科学基金“不可靠网络环境下多机器人系统的协调控制研究(LY21F030007)”,(2021.01-2023.12

2.作为主持人承担浙江省自然科学基金“基于MPC的强鲁棒性网络控制系统理论研究(LY16F030008)”,(2016.01-2018.12.

3.作为主持人承担国家自然科学基金“基于低复杂度预测控制的网络控制系统理论与应用研究(61203025)”,(2013.01-2015.12.

4.作为主要成员参与了国家自然科学基金面上项目“基于模糊滑模的多机器人编队控制研究(61773146)”,(2018.01-2021.12).

5.作为主要成员参与了国家自然科学基金面上项目“面向环境监测的数据驱动学习与多目标协同控制方法(62073108)”,(2021.01-2024.12).

横向科研
论文

[1] Ting Shi, Peng Shi and Jonathon Chambers, "Dynamic event-triggered model predictive control under channel fading and denial-of-service attacks," IEEE Transactions on Automation Science and Engineering, 2023, early access article, pp. 1-12, doi: 10.1109/TASE.2023.3325534.

[2] Ting Shi, Peng Shiand Zheng-Guang Wu"Finite-time stochastic dissipative output tracking control of semi-Markov jump systems via an adaptive event-triggered mechanism,International Journal of Robust and Nonlinear Control, vol. 33, no. 13, pp. 7774-7792, 2023. 

[3] Ting Shi, Yilin Guan and Yuemiao Zheng, "Model predictive control of networked control systems with disturbances and deception attacks under communication constraints,International Journal of Robust and Nonlinear Control, 2022, pp. 1-19, early access article, doi:10.1002/rnc.6363. 

[4] Ting Shi, Yuemiao Zheng and Yilin Guan, "Input-output finite-time control of Markov jump systems with round-robin protocol: an dynamic event-triggered approach,Journal of the Franklin Institute, vol. 359, no. 8, pp. 3427-3443, 2022.

[5] Ting Shi, Peng Shiand Zheng-Guang Wu, "Dynamic event-triggered asynchronous MPC of Markovian jump systems with disturbances,” IEEE Transactions on Cybernetics, vol. 52, no. 11, pp. 11639-11648, 2022.

[6]  Ting Shi, Peng Shi* and Liping Zhang, "Distributed L2-L∞ consensus of multi-agent systems under asynchronous switching topologies,” International Journal of Control, vol. 95, no. 2, pp. 544-553, 2022.

[7] Ting Shi, Peng Shi and Huiyan Zhang,"Model predictive control of distributed networked control systems with quantization and switching topology,” International Journal of Robust and Nonlinear Control,vol. 30, no. 12, pp.  4584-4599, 2020.

[8]  Ting Shi, Peng Shi and Shuoyu Wang, "Robust sampled-data model predictive control for networked systems with time-varying delay,” International Journal of Robust and Nonlinear Control, vol. 29, no. 6, pp. 1758-1768, 2019.

[9] Ting Shi, Tingting Tang and Jianjun Bai, "Distributed event-triggered control co-design for large-scale systems via static output feedback,Journal of the Franklin Institute, vol. 356, no. 17, pp. 10393-10404, 2019.

[10] Ting Shi, Zheng-Guang Wu and Hongye Su, "Improved dynamic output feedback RMPC for linear uncertain systems with input constraints,”International Journal of Robust and Nonlinear Control, vol. 26, no. 12, pp. 2729-2742, 2016.

[11] Ting Shi,Renquan Lu and Qiang Lv, "Robust static output feedback infinite horizon RMPC for linear uncertain systems,Journal of the Franklin Institutevol. 353, no. 4, pp. 891-902, 2016.

[12] Ting Shi, "Finite-time control of linear systems under time-varying sampling,” Neurocomputing,vol. 151, no. 3, pp. 1327-1331, 2015.

[13] Ting Shi and Hongye Su, "Sampled-data MPC for LPV systems with input saturation,” IET Control Theory & Applications, vol. 8, no. 17, pp. 1781-1788, 2014.

[14]  Ting Shi, Hongye Su and Jian Chu, "An improved model predictive control for uncertain systems with input saturation,” Journal of the Franklin Institutevol. 350, no. 9, pp. 2757-2768, 2013

科研成果

1. 作为主持人承担浙江省自然科学基金“不可靠网络环境下多机器人系统的协调控制研究(LY21F030007)”,(2021.01-2023.12

2.作为主持人承担浙江省自然科学基金“基于MPC的强鲁棒性网络控制系统理论研究(LY16F030008)”,(2016.01-2018.12.

3.作为主持人承担国家自然科学基金“基于低复杂度预测控制的网络控制系统理论与应用研究(61203025)”,(2013.01-2015.12.

4.作为主要成员参与了国家自然科学基金面上项目“基于模糊滑模的多机器人编队控制研究(61773146)”,(2018.01-2021.12).

5.作为主要成员参与了国家自然科学基金面上项目“面向环境监测的数据驱动学习与多目标协同控制方法(62073108)”,(2021.01-2024.12).

著作
专利成果
荣誉及奖励
软件成果